Self Studies

Mechanical Properties of Solids Test - 20

Result Self Studies

Mechanical Properties of Solids Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The ratio of lengths of two wires made of same material is $$2 :3$$. The ratio of their respective longitudinal stress to produce same elongation is
    Solution
    $$\dfrac{L_{1}}{L_{2}}=\dfrac{2}{3}$$

    $$\Delta L_{1}=\Delta L_{2}$$ (given)

    $$y_{1}=y_{2}$$ (given)

    $$\dfrac{\sigma _{1}}{\epsilon _{1}}=\dfrac{\sigma _{2}}{\epsilon _{2}}$$ (as inferred from question)

    $$\dfrac{\sigma _{1}}{\sigma _{2}}=\dfrac{\epsilon _{1}}{\epsilon _{2}}$$

    $$\dfrac{\sigma _{1}}{\sigma _{2}}=\dfrac{\Delta L_{1}}{L_{1}}\times \dfrac{L_{2}}{\Delta L_{2}}$$$$=\dfrac{3}{2}\times 1$$
  • Question 2
    1 / -0
    Ratio of lengths of two brass wires is 3 : 4; their areas of cross section are in the ratio 2:3. When same force is applied on them, the elongations produced will be in the ratio:
    Solution
    $$\dfrac{L_{1}}{L_{2}}=\dfrac{3}{4}  ,  \dfrac{A_{1}}{A_{2}}=\dfrac{2}{3}$$

    $$\dfrac{\Delta L_{1}}{\Delta L_{2}}=\dfrac{3}{4}\times \dfrac{3}{2}$$$$=\dfrac{9}{8}$$
  • Question 3
    1 / -0
    The length of a wire of cross-sectional area $$1 \times $$ 10$$^{-6}   m^{2}$$ is 10m. The young's modulus of the material of the wire is 25 G.pa. When the wire is subjected to a tensile force of $$100N$$, the elongation produced in $$mm$$ is:
    Solution
    $$\Delta L=\dfrac{100\times 10}{10^{-6}\times 25\times 10^{9}}$$$$=0.04  m$$$$=40  mm$$                 (using standard result $$Y=\dfrac{(\dfrac{F}{A})}{(\dfrac{\text{change in length}}{\text{actual length}})}$$)
  • Question 4
    1 / -0
    A steel wire of length 1 m has cross sectional area $$1cm$$$$^{2}$$. If young's modulus of steel is $$10^{11}N / m^{2}$$ ,then force required to increase the length of wire by 1 mm will be :
    Solution
    Given, $$L=1 m,  A=10^{-4} m^{2}$$, $$\Delta l = 1mm$$, $$y= 10 ^{11} N/m^2$$

    We know, $$\Delta L=\dfrac{FL}{Ay}$$

    $$.001=\dfrac{F\times 1}{10^{-4}\times 10^{11}}$$

    $$F=10^{4}N$$
  • Question 5
    1 / -0
    Two steel wires have equal volumes. Their diameters are in the ratio 2 : 1. When same force is applied on them, the elongation produced will be in the ratio of:
    Solution
    Volume is equal.

    i.e.  $$\pi  r_{1}^{2}L_{1} = \pi r_{2}^{2}L_{2}$$

    given  $$\dfrac{r_{1}}{r_{2}}=\dfrac{2}{1}$$

    i.e. $$\dfrac{L_{1}}{L_{2}}=\dfrac{1}{4}$$

    applying same force.

    $$\dfrac{\Delta L_{1}}{\Delta L_{2}}=\dfrac{L_{1}}{L_{2}}\times \dfrac{A_{2}}{A_{1}}$$

    $$=\dfrac{1}{4}\times \dfrac{1^{2}}{2^{2}}$$

    $$=\dfrac{1}{16}$$
  • Question 6
    1 / -0
    A $$3 cm$$ long copper wire is stretched to increase its length by $$0.3cm.$$ If poisson's ratio for copper is $$0.26$$, the lateral strain in the wire is
    Solution
    $$\epsilon x=\dfrac{0.3}{3}$$$$=0.1$$ (standard result)

    $$\sigma =0.26$$ (given)

    $$0.26=\dfrac{-\epsilon y}{0.1}$$

    $$-0.026=\epsilon y$$
  • Question 7
    1 / -0
    The diameters of two steel wires are in the ratio 2: 3. Their lengths are equal. When same force is applied on them, the ratio of the elongation produced is
    Solution
    $$\dfrac{r_{1}}{r_{2}}=\dfrac{2}{3}$$
    $$\dfrac{A_{1}}{A_{2}}=\dfrac{4}{9}$$
    $$\dfrac{\Delta L_{1}}{\Delta L_{2}}=\dfrac{A_{2}}{A_{1}}$$$$=9/4$$
  • Question 8
    1 / -0
    A copper wire and a steel wire of radii in the ratio $$1:2$$ lengths in the ratio $$2:1$$ are stretched by the same forces. If young's modulus of copper $$=1.1\times 10^{11}N / m^{2}$$, young's modulus of steel $$= 2\times 10^{11}N /m^{2}$$. Ratio of their extensions is :
    Solution
    Given, $$\dfrac{r_{c}}{r_{s}}=\dfrac{1}{2} , \quad \dfrac{L_{c}}{L_{s}}=\dfrac{2}{1} , \quad \dfrac{Area_{c}}{Area_{s}}=\dfrac{1^{2}}{2^{2}}=\dfrac{1}{4}$$

    ($$r_c$$,$$L_c$$ and $$Area_c$$ denote the corresponding radius,length and area of specimen used)

    $$y_{c}=1.1\times 10^{11} N/m^{2} , \quad y_{s}=2\times 10^{11} N/m^{2}$$

    $$\Delta L=\dfrac{FL}{Ay}$$    (F is same)

    $$\therefore \dfrac{\Delta L_{C}}{\Delta L_{S}}=\dfrac{FL_{C}}{A_{C}y_{C}}\times \dfrac{A_{S}y_{S}}{FL_{S}}$$$$=\dfrac{2}{1}\times \dfrac{4}{1}\times \dfrac{2\times 10^{11}}{1.1\times 10^{11}}$$$$=\dfrac{16}{1.1}$$$$=\dfrac{160}{11}$$
  • Question 9
    1 / -0
    The force that must be applied to a steel wire $$6m$$ long and diameter $$1.6mm$$ to produce an extension of 1mm [$$y=2.0 \times 10^{11}N.m^{-2}$$] is approximate.
    Solution
    $$L = 6m ,  d = 1.6\times 10^{-3} m$$ 
    ($$d$$,and $$L$$  denote the corresponding radius,and length of specimen used)
    $$\Delta L=1\times 10^{-3} m , y=2\times 10^{11} N/m^{2}$$
    $$F=\dfrac{\Delta L  Ay}{L}$$
    $$=\dfrac{1\times 10^{-3}\times \pi \times (1.6\times 10^{-3})^2\times 2\times 10^{11} }{6\times 4}$$
    $$=67 N$$
  • Question 10
    1 / -0
    A volume of $$10^{-3}m^{3}$$ is subjected to a pressure of 10 atmospheres. The change in volume is $$10^{-6}m^{3}$$. Bulk modulus of water is (Atmosphere pressure = 1x10$$^{5} N / m^{2}$$ ) :
    Solution
    Given,
    $$\Delta V=-10^{-6}m^3$$
    $$V=10^{-3}m^3$$
    $$P=10\times 10^5 N/m^2$$
    Bulk modulus,
    $$B=-\dfrac{F/A}{\Delta V/V}$$
    $$B=-\dfrac{P}{\Delta V/V}$$
    $$B=-\dfrac{10\times 10^5}{-10^{6}/10^{-3}}=1\times 1-^9$$
    $$B=1\times 10^9 N/m^2$$
    The correct option is A.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now