Self Studies

Mechanical Properties of Solids Test - 57

Result Self Studies

Mechanical Properties of Solids Test - 57
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The stress required to double the length of wire (or) to produce $$100\%$$ longitudinal strain is:
    Solution
    $$\cfrac{Stress}{Strain}=Young's$$ $$modulus$$
    $$Longitudinal$$ $$strain=\cfrac{Change\quad in\quad length}{Initial\quad length}$$
    Here, $$\cfrac{2L-L}{L}=\cfrac{L}{L}=1$$
    $$\therefore Y=\cfrac{Stress}{1}$$
  • Question 2
    1 / -0
     A uniform rod of length $$60 cm$$ and mass $$6kg$$ is acted upon by two forces as shown in the diagram. The force exerted by $$45 cm$$ part of the rod on $$15 cm$$ part of the rod is 

    Solution

    The force exerted by $$45\;{\rm{cm}}$$ part of the rod on $$15\;{\rm{cm}}$$art of the rod is given as,

    $$F = {F_1} \times \frac{{15}}{{60}} + {F_2} \times \frac{{45}}{{60}}$$

    $$F = 21 \times \frac{{15}}{{60}} + 45 \times \frac{{45}}{{60}}$$

    $$F = 45 \times \frac{{15}}{{60}} + 21 \times \frac{{45}}{{60}}$$

    $$F = 27\;{\rm{N}}$$

  • Question 3
    1 / -0
    Two wires A and B are identical in shape and size are stretched by same magnitude of force. Then the extensions are found to be 0.2% and 0.3% respectively. Find the rate of their Young's modulii
    Solution
    $$\gamma{A}=\dfrac{stress}{strain}$$
    $$stress_{A}=stress_{B}$$
    $$\dfrac { { \gamma  }_{ A } }{ { \gamma  }_{ B } } =\dfrac { { strain }_{ B } }{ { stress }_{ A } } =\dfrac { 0.3\times { 10 }^{ -2 } }{ 0.2\times { 10 }^{ -2 } } $$
    $$=3:2$$
  • Question 4
    1 / -0
    In the Searle's method to determine the Young's modulus of a wire, a steel wire of length $$156\ cm$$ and diameter $$0.054\ cm$$ is taken as experimental wire. The average increase in length for $$1.5\ kg\ wt$$ is found to be $$0.050\ cm$$. Then the Young's modulus of the wire is
    Solution

    Young’s modulus is given by

    $$ Y=\dfrac{FL}{A\Delta l} $$

    $$ Y=\dfrac{1.5\times 10\times 156}{3.14\times 2.7\times {{10}^{-4}}\times 5\times {{10}^{-4}}} $$

    $$ Y=1.002\times {{10}^{-11}}\,N/{{m}^{2}} $$


  • Question 5
    1 / -0
    For a material $$Y={ 6.6\times 10 }^{ 10 }\ { N/m }^{ 2 }$$ and bulk modulus $$K{ 11\times 10 }^{ 10 }\ { N/m }^{ 2 }$$, then its Poisson's ratio is:
    Solution

    Given that,

    Young’s modulus $$Y=6.6\times {{10}^{10}}\,N/{{m}^{2}}$$

    Bulk modulus $$B=11\times {{10}^{10}}\,N/{{m}^{2}}$$

    We know that,

      $$ Y=3K\left( 1-2\mu  \right) $$

     $$ 6.6\times {{10}^{10}}=3\times 11\times {{10}^{10}}-66\times {{10}^{10}}\mu  $$

     $$ -\mu =\dfrac{\left( 6.6-33 \right)\times {{10}^{10}}}{66\times {{10}^{10}}} $$

     $$ \mu =0.4 $$

    Hence, the poisson’s ratio is $$0.4$$

  • Question 6
    1 / -0
    A copper wire and an aluminium wire have lengths in the ratio 3:2, diameters in the ration 2:3 and forces applied in the ration 4:5. Find the ratio of the increase in the length of the two wires. 
    $$\left( { Y }_{ cu }=1.1\times { 10 }^{ 11 }N{ m }^{ -2 },\quad { Y }_{ Al }=0.70\times { 10 }^{ 11 }N{ m }^{ -2 }\quad  \right) $$
    Solution
    Youngs Modulus $$=\dfrac{FL}{A\Delta L}$$
    $$\Rightarrow \Delta L=\dfrac{FL}{AY}$$
    Given :- $$L_{cu}:L_m=3:2$$
                  $$d_{cu}:d_m=2:3$$
                 
     $$A_{cu}:A_{Al}=\dfrac{\pi}{4}(d_{cu})^2/\dfrac{\pi}{4}(d_{Al})^2$$
                             
                       $$=\left(\dfrac{2}{3}\right)^2$$

    $$F_{cu}:F_{Al}=4:5$$

    Ratio of increase in length of wires  $$=\left(\dfrac{F_{cu}}{F_{Al}}\right)\left(\dfrac{L_{cu}}{L_{Al}}\right)\left(\dfrac{A_{Al}} {A_{Cu}}\right)\left(\dfrac{Y_{Al}}{Y_{Cu}}\right)$$
                                                            
                                                                 $$=\left(\dfrac{4}{5}\right)\left(\dfrac{3}{2}\right)\left(\dfrac{9} {4}\right)\left(\dfrac{7}{11}\right)$$


                                                                 $$=\dfrac{189}{110}$$

  • Question 7
    1 / -0
    The breaking stress of aluminium is $$7.5\times 10^{7}Nm^{-2}$$. The greatest length of aluminium wire that can hang vertically without breaking is(Density of auminium is $$2.7\times 10^{3}\ kg\ m^{-3}$$)
    Solution
    $$ \begin{array}{l} \text { Given, breaking stress of aluminium }=7.5 \times 10^{7}\mathrm{~N}/\mathrm{m}^{2}\\\text { Density of aluminium }==2.7 \times 10^{3}\mathrm{~kg}/\mathrm{m}^{3}\\\text { Stress }=\frac{F}{A}=\frac{m g}{A} \\ d=\frac{m}{A \times L}\Rightarrow\frac{m}{A}=d x L \\ \therefore \quad 7.5\times 10^{73}=2 \cdot 7 \times 10^{3} \times L \times 100\\L=2.83\times 10^{3} \mathrm{~m} \text { . } \end{array} $$
  • Question 8
    1 / -0
    A steel wire $$2\ m$$ in length is stretched by $$1\ mm$$. The cross-sectional area of the wire is $$2\ mm^{2}$$. If Young's modulus of steel is $$2\times 10^{11}\ N/m^{2}$$, then the elastic potential energy stored in the wire is
    Solution
    given, Steel wire length 
    $$=2 \mathrm{~m}$$
    $$ Area=2 \mathrm{~mm}^{2} $$ 
    Young modulus of steel $$=2 \times 10^{11}$$
    Using the spring equivalent concept: $$ \begin{aligned} U &=\frac{1}{2} K(\Delta L)^{2} \quad \text { where } \quad K=\frac{Y A}{L} \\ &=\frac{1}{2}\left(\frac{Y A}{L}\right)(\Delta L)^{2} \\ &=\frac{1}{2} \times\left(\frac{2 \times 10^{11} \times 10^{-6} \times 2}{2}\left(10^{-6}\right)\right.\\ U &=0.1\mathrm{~J}\end{aligned} $$ Elastic potential energy stored is $$\underline{0.1 \mathrm{I}}$$
  • Question 9
    1 / -0
    Three bars having length $$l,2l$$ and $$3l$$ and area of cross-section $$A,2A$$ and $$3A$$ are joined rigidly and to end. Compound rod is subjected to a stretching force $$F$$. The increase in length of rod is (Young's modulles of material is $$Y$$ and bars are massless)
    Solution
    Changed in length of compound bar $$=\Delta {l}_{1}+\Delta {l}_{2}+\Delta {l}_{3}$$
    $$\Delta l=\cfrac{PL}{AE}=\cfrac{FL}{AE}=\cfrac{FL}{AY}$$ ($$E=$$Young's modulus)
    $$=\cfrac{Fl}{AY}+\cfrac{F(2l)}{2AY}+\cfrac{F(3l)}{3AY}$$
    $$=\cfrac{3Fl}{AY}$$
  • Question 10
    1 / -0
    A hydraullic press contains $$250 lit$$ of oil. Find the decrease in volume of the oil when its  pressure increases to $$ 10^7 Pa$$ . The bulk modulus of the oil is $$ K = 5 \times 10^5 Pa$$
    Solution
    Bulk modulus $$=-\dfrac{volume  \times \Delta Pressure}{\Delta volume}$$

    $$\Delta volume$$ $$=-\dfrac{volume  \times \Delta Pressure}{Bulk \quad modulus}$$

    $$\Delta volume=-\dfrac{250\times 10^7}{5\times 10^9}=-0.5 $$ liters.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now