Self Studies

Mechanical Properties of Solids Test - 60

Result Self Studies

Mechanical Properties of Solids Test - 60
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The bulk modulus of water is $$2.1 \times 10^9 N/m^2$$. The pressure required to increase the density of water by $$0.1$$% is:-
    Solution
    $$\begin{array}{l} \frac { { \Delta V } }{ V } =\frac { { -\Delta P } }{ P } =-{ 10^{ -3 } } \\ \Rightarrow \Delta P=-B\frac { { \Delta V } }{ V } =2.1\times { 10^{ 9 } }\times { 10^{ -3 } }=2.1\times { 10^{ 6 } } \end{array}$$
  • Question 2
    1 / -0
    A plank of mass $$M$$ is suspended horizontally by using two wires as shown in the figure.They have same length $$(L)$$ and same cross sectional area $$(A)$$. Their Young's modulus are $$Y_1$$ and $$Y_2$$ respectively. The elastic potential energy of the system will be

    Solution
    In both wires tension =$$\left(\dfrac{m_2}{2}\right)=F$$
    Total strain energy $$=S_1+S_2$$
    $$=\dfrac{2F^2l}{Y_1}+\dfrac{2F^2l}{y_2}$$
    $$=\dfrac{2M^2g^2l}{AY_1}+\dfrac{2M^2g^2l}{YA}$$
    $$=\dfrac{M^2y^2l}{2A(Y_1+Y_2)}$$

  • Question 3
    1 / -0
    The compressibility of water is $$ 5 \times 10^{-10}m^2/N$$ and subjected to a pressure of 15 MPa.The fractional decrease in volume will be 
    Solution
    $$\begin{array}{l}\text { Compressibily }(\gamma)=\dfrac{1}{\text { Bulk Modulus }(B)}=5\times10^{-10} \\P=15 \mathrm{MPa} \\\text { We know ,} \\P=-B  \dfrac{\Delta V}{V}\end{array}$$
    $$\begin{aligned}&\begin{aligned}\Rightarrow\dfrac{\Delta V}{V}=-\dfrac{P}{B}=-15 \times 10^{6} \times 5\times 10^{-10} &=-75 \times 10^{-4} \\&=-7.5 \times 10^{-3}\end{aligned}\\&\text { Answer: }\quad(A)\end{aligned}$$

  • Question 4
    1 / -0
    A copper wire is having length $$2m$$ and area of cross -section $$2mm^2$$. Then amount of work done (in joule ) in increasing its length by $$0.1mm$$ will be (Young's modulus o elasticity for copper $$Y=1.2\times 10^{11}Nm^{-2}$$ 
    Solution
    $$W=\dfrac{1}{2}\times $$stress $$\times $$ volume
    $$stress=y\times strain$$
    $$W=\dfrac{1}{2}(strain)^2\times Vol$$
    Strain $$=\dfrac{\Delta L}{L}=\left(\dfrac{10-4}{2}\right)$$
    $$vol=A\times L=2\times 10^{-6}\times 2$$
    $$=4\times 10^{-6}$$
    $$W=\dfrac{1.2\times 10^{11}}{2}\times \dfrac{10^{-8}}{4}\times 4\times 10^{-6}$$
    $$=0.6\times 10^{-3}$$
    $$W=6\times 10^{-4}J$$
  • Question 5
    1 / -0
    If the temperature of a wire of length $$2m$$ area of cross-section $$1{cm}^2$$ is increased from $${0^ \circ}C$$ to $${80^ \circ}C$$ and is not allowed to increase in length, then force required for it is {$$Y = 10^{10}N/m^2, \alpha = 10^{ - 6}/^oC$$}
    Solution
    80N

    Formula,

    $$F=YA\alpha \Delta T$$

    $$=10^{10}\times 0.0001\times 10^{-6}\times (80-0)$$

    $$\therefore F=80N$$
  • Question 6
    1 / -0
    A mild steel wire of length $$2L$$ and cross-sectional area $$A$$ is stretched, well within elastic limit, horizontally between two pillars. A mass $$m$$ is suspended from the mind point of the wire. Strain in the wire is
    Solution
    $$\begin{array}{l}\text { Increase in Length }=\Delta L=A B+B C - A C=2 A B-A C \\\qquad A B=\sqrt{x^{2}+L^{2}} \quad , A C=2 L\\\Rightarrow\quad \Delta L=2 \sqrt{x^{2}+L^{2}}-2 L\\\Rightarrow \Delta L=2 L\left(1+\left(\dfrac{x}{L}\right)^{2}\right)^{1 / 2}-2 L \\\Rightarrow\Delta L=2 L\left \{\sqrt{1+\dfrac{x^{2}}{L^{2}}}-1\right\}.\end{array}$$

    $$\begin{array}{l}\text { Using Binomial theorem. }\\\left(1+\dfrac{x^{2}}{L^{2}}\right)^{\dfrac{1}{2}}=1+\dfrac{x^{2}}{2 L^{2}} \\\Delta L=2 L\left\{1+\dfrac{x^{2}}{2 L^{2}}-1\right\}=\dfrac{x^{2}}{L}\\\text { strain }=\dfrac{\Delta l}{2 L}=\dfrac{x^{2}}{2 L^{2}}\end{array}$$

    $$\text { Ans } \rightarrow A$$
  • Question 7
    1 / -0
    A hydraulic press contains 250 litres of oil. Find the decrease in volume of the oil when its pressure increase to $$10^7 Pa$$. The bulk modulus of the oil is $$K=5 \times 10^9 Pa$$.
    Solution
    Given,

    $$\Delta P=10^7Pa$$

    $$V=250 $$ lit

    $$K=5\times 10^9 Pa$$

    The bulk modulus of the oil is given by,

    $$K=-\dfrac{\Delta P}{\Delta V/V}$$

    $$\Delta V=-\dfrac{V\Delta P }{K}$$

    $$\Delta V=-\dfrac{250\times 10^7}{5\times 10^9}$$

    $$\Delta V=-0.5 $$ lit

    The correct option is B.
  • Question 8
    1 / -0
    One end of uniform wire of length L and of weight W is attached  rigidly to a point in the roof and a weight  $$ W_1  $$ is suspended from its lower end. If s is the area of cross section of the wire, the stress in the wire at a height $$\dfrac{L}{4}$$ from its lower end is -
    Solution
    Consider the FBD as:
    Let x be the weight of wire part of $$l=l/4$$
    As wire is uniform,
    $$\dfrac{x}{\dfrac{l}{4}}=\dfrac{w}{l}$$
    $$\Rightarrow x=w/4$$
    For equilibrium,
    $$F=w_1+x=w_1+w/4$$
    So stress at point P$$=\dfrac{F}{s}=\dfrac{(w_1+w/4)}{s}$$
    option B is correct.

  • Question 9
    1 / -0
    When a metal wire is stretched by a load, the fractional change in its volume $$\Delta V/V$$ is proportional to?
    Solution
    $$v=\dfrac { \pi { d }^{ 2 }l }{ 4 } $$ 

    $$⟹\dfrac { ΔV }{ V } =\dfrac { 2Δd }{ d } +\dfrac { Δl }{ l } $$
     $$⟹d\frac { ΔV }{ V } =\dfrac { (1−2σ)Δl }{ l } $$

    $$(\dfrac { Δd }{ d } =\dfrac { −σΔl }{ l } )$$

    where $$σ$$ is Poisson's ratio.

  • Question 10
    1 / -0
    A cubical ball is taken to a depth of $$200m$$ in a sea. The decrease in volume observed to be $$0.1\%$$. The bulk modulus of the ball is ($$10={ ms }^{ -2 }$$)
    Solution
    We know,

    $$\beta=\dfrac{-PV}{\Delta V}$$

    $$\beta=\dfrac{-2.1\times 10^6}{-10^{-3}}$$

    $$\beta=2.1\times 10^9$$

    Option $$\textbf C$$ is the correct answer
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now