Self Studies

Mechanical Properties of Solids Test - 65

Result Self Studies

Mechanical Properties of Solids Test - 65
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The Young's modulus of the material of a rod is $$20 \times 10^{10}$$ pascal. When the longitudinal strain is 0.04%, The energy stored per unit volume is
    Solution
    $$\begin{array}{l}\text { Energy stored per unit volume }=\frac{1}{2} \times \text { stress}\times\text{strain. } \\\qquad \begin{array}{c}\text { Giuen } y=20 \times 10^{10}\mathrm{Pa}\text { and } \text { strain }=0.04\% \\y=\frac{\text { Stress }}{\text { strain. }} \Rightarrow \text { stress }=y(\text { strain })\end{array}\end{array}$$

    $$\begin{aligned}\Rightarrow \text { Energy stored }&\text { Per unit volume }=\frac{1}{2}\times Y(\operatorname{strain} )^{2} \\&=\frac{1}{2} \times 20 \times 10^{10} \times\left(4 \times 10^{-4}\right)^{2} \\&=10 \times 10^{10} \times 16\times 10^{-8} \\&=16 \times 10^{3} \mathrm{~J} /\mathrm{m}^{3}\end{aligned}$$
  • Question 2
    1 / -0
    A woman with a mass of $$65\ kg$$ puts all her weight on one heel of her high-heel shoe. The cross-sectional area of the heel is $$1\ cm^{2}$$. According to the table, if she is standing on a pane of glass that is flat against the ground, does the glass break :
    Solution
    $$(B)$$ No, because the stress is less than the ultimate strength of glass.
    $$m=65kg$$
    $$A=1{ cm }^{ 2 }$$
        $$=1\times { \left( { 10 }^{ -2 } \right)  }^{ 2 }$$
        $$=1\times { 10 }^{ -4 }{ m }^{ 2 }$$
  • Question 3
    1 / -0
    A metal wire of length $$1\ m$$ and cross-section area $$2\ mm^{2}$$ and Young's modulus of elasticity $$Y=4\times 10^{11}\ N/m^{2}$$ is stretched by $$2\ mm$$. Then
    Solution
    $$L=1m$$
    $$\alpha=2{ mm }^{ 2 }=\left( \dfrac { 2 }{ { \left( 1000 \right)  }^{ 2 } }  \right) =2\times { 10 }^{ -6 }m$$
    $$Y=4\times { 10 }^{ 11 }N/{ m }^{ 2 }$$
    $$\Delta l=2mm=\dfrac { 2 }{ 10.00 } =0.002m$$
    $$F=\dfrac { Y\alpha l }{ L } $$
        $$=\dfrac { 4\times { 10 }^{ 11 }\times 2\times { 10 }^{ -6 }\times 2\times { 10 }^{ -3 } }{ 1m } $$
        $$=16\times { 10 }^{ 11-6-3 }$$
        $$=16\times { 10 }^{ 11-9 }$$
        $$=16\times { 10 }^{ 2 }$$
        $$=1600N$$
    Where $$\alpha =$$ cross sectional area $$=2\times { 10 }^{ -6 }m$$
                $$l=2mm=2\times { 10 }^{ -3 }m$$
                $$L=1m$$
  • Question 4
    1 / -0
    A force F doubles the length of wire of cross-section a. The Young modulus of wire is
    Solution
    As youngsters modulus is given as$$,$$
    $$Y=f/a.$$ $$L/\Delta L$$
    From above we can conclude that 
    $$Y' = 2Y$$
    That is youngs modulus becomes $$2$$ times to its original value$$.$$
    Hence,
    option $$(C)$$ is correct answer.
  • Question 5
    1 / -0
    An elastic metal rod will change its length when it
    Solution
    $$\begin{array}{l}\text { An elastic metal rod will change it's length when } \\\text { it is pulled along it's length by a force acting at one } \\\text { end. }\end{array}$$


  • Question 6
    1 / -0
    If the speed of longitudinal wave equals $$10$$ times the speed of the transverse waves in a stretched wire of material which has modulus of elasticity E, then the stress in the wire is
    Solution
    $${v}_{l}=\sqrt{\dfrac{Y}{\rho}}$$ and $${v}_{t}=\sqrt{\dfrac{Y\dfrac{\Delta l}{l}}{\rho}}={v}_{l}\sqrt{\dfrac{\Delta l}{l}}$$
    $$\Rightarrow \sqrt{\dfrac{l}{\Delta l}}=\dfrac{{v}_{l}}{{v}_{t}}=10$$
    $$\therefore \dfrac{\Delta l}{l}=\dfrac{1}{100}$$
    Stress$$=Y\dfrac{\Delta l}{l}=E\dfrac{\Delta l}{l}=\dfrac{E}{100}$$
  • Question 7
    1 / -0
    Two wires of the same material have masses in the ratio 3:4. The ratio of their extensions under the same load if their lengths are in the ratio 9:10 is
    Solution
    $$Y=\dfrac { FL }{ \left( Ae \right)  } $$
    For same material $$Y$$ is constant and $$A$$ is constant for two similar wires.
    $$\dfrac { FL }{ e } =$$ constant
    here, $$F=mg$$
    $$\dfrac { { e }_{ 1 } }{ { e }_{ 2 } } =\dfrac { { m }_{ 1 } }{ { m }_{ 2 } } \times \dfrac { { L }_{ 1 } }{ { L }_{ 2 } } $$
          $$=\dfrac { 3 }{ 4 } \times \dfrac { 9 }{ 10 } $$
          $$=\dfrac { 27 }{ 40 } $$
  • Question 8
    1 / -0
    In case of bending of a beam, depression $$\delta$$ depends on Young modulus of elasticity $$Y$$ as
    Solution
    In case of bending of a beam, depression  
    $$\delta$$ depends on Young modulus of elasticity $$Y$$ as
    $$ \delta = \dfrac{PL^3}{48YI}$$
    $$\therefore  \delta  \propto Y^{-1}$$
    Depression δ=WL34bd3Yδ1Y Depression δ=WL34bd3Y⇒δ∝1
  • Question 9
    1 / -0

    A steel bar of cross-section $$500$$ mm and length $$1$$ m acted upon by two forces as shown If Young modulus of elasticity of steel is $$200 \times 10^9$$ $$N/m^2$$ then elongation of the rod is 

    Solution
    $$\begin{array}{l}\text { Tension in } b a r=50\times10^{3}N\\\text { length }=12 m \\\text { Area of cross section =500mm }^{2} \\\qquad Y=200\times10^{9}\mathrm{~N} / \mathrm{m}^{2}\end{array}$$

    $$\begin{aligned}\Delta l &=\frac{F L}{A Y}\\&=\frac{50_{}\times 10^{3} \times 1}{\operatorname{500}\times10^{6}\times200\times10^{9}}\\&=\frac{1}{2} \times 10^{-3} \\\Delta l&=0.5\mathrm{~mm}\end{aligned}$$
  • Question 10
    1 / -0
    The extension produced in a wire by the application of a load is $$3.0$$ mm. The extension produced in a wire of the same material and length but half the radius by the same load is:
    Solution
    Formulae,

    $$\dfrac{\Delta l_2}{\Delta l_1}=\dfrac{a_1}{a_2}$$

    $$=\dfrac{a_1}{\dfrac{a_1}{4}}$$

    $$\Rightarrow \Delta l_2=4\Delta l_1$$

    $$\therefore \Delta l_2=4\times 3=12mm$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now