Self Studies

Chemical Kinetics Test - 21

Result Self Studies

Chemical Kinetics Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The most common molecular collisions are in between:
    Solution

  • Question 2
    1 / -0
    The half life of first order reaction $$PCl_{5} \rightarrow PCl_{3}+Cl_{2}$$ is 10 minutes at a certain temperature. The time in which the concentration of $$PCl_{5}$$ would be reduced to 10% of the initial concentration is:
    Solution
    The relationship between the rate constant and half life period is $$k=\displaystyle \frac{0.693}{t}=\displaystyle \frac{0.693}{10}=0.0693$$.
    The integrated rate law expression is $$k=\displaystyle \frac{2.303}{t}\log\frac{a}{a-x}.$$
    Substitute values in the above expression. 
    $$0.0693=\displaystyle \frac{2.303}{t}\log\frac{100}{10}.$$
    $$t=33  min$$.
  • Question 3
    1 / -0
    For the gas phase decomposition $$A\rightarrow2B$$, the rate constant is $$6.93\times 10^{-3}$$ $$min^{-1}$$ at 300K. The percentage of A remaining at the end of 300 minutes is :
    Solution
    $$ln\left [ \frac{Ao}{A} \right ]=kt$$
    $$=6.93\times 10^{-3}\times 300$$
    $$\frac{Ao}{A}=8$$
    $$\frac{A}{Ao}=.1250$$
    $$\frac{A}{Ao}\times 100$$ =12.5%
  • Question 4
    1 / -0
    The rate of a certain reaction at different times are as follows:
    Timerate ($$mole$$ $$lit^{-1}\sec^{-1}$$)
    I) 0a) $$2.8 \times 10^{-2}$$
    II) 10b) $$2.78\times 10^{-2}$$
    III) 20c) $$2.81\times 10^{-2}$$
    IV) 30d) $$2.79\times 10^{-2}$$
    The correct matching is:
    Solution
    At different times, the rate of the reaction is same.
    Hence, the rate of the reaction is independent of time.
    This is the characteristics of a zero order reaction.
  • Question 5
    1 / -0
    From the graph pick out the correct one:

    Solution
    The change in energy of a reaction is equal to the energy of products minus the energy of reactants.
    $$\Delta E=E_{C}-E_{A}$$.
  • Question 6
    1 / -0
    For a zero-order reaction $$A$$ $$\rightarrow $$ product, the rate constant is $$10^{-2}\ mol\ L^{-1}\ s^{-1}$$ . Starting with 10 moles of $$A$$ in a 1 L vessel, how many moles of $$A$$ would be left unreacted after 10 minutes?
    Solution
    $$k=10^{-2}$$
    $$kt = R_o - R$$
    $$10^{-2}\times 10\times 60=\dfrac{10}{1}-R$$
    $$R$$ $$= 6\ mol L^{-1}$$
    6 mole react unreacted mole $$= 10 -6$$
    $$= 4 moles$$
  • Question 7
    1 / -0
    Which is the graphical representation for the zeroth order reaction?
    Solution
    rate = k
    $$\dfrac{-dx}{dt}=k$$
    Where k is rate constant. Thus, the rate of reaction is independent of concentration of reactant.
    So $$\dfrac{dx}{dt}$$ is constant.
    Hence graph will be constant straight line parallel to x axis.
  • Question 8
    1 / -0
    For the reaction $$2N_2O_5 \rightarrow 4NO_2+ O_2$$ rate at a particular time and rate constant are $$1.02\times 10^{-4}\ M s^{-1}$$ and  $$3.4\times10^{-5}\ Ms^{-1}$$ respectively. Then the concentration of $$N_2O_5$$ at that time will be:
    Solution
    Unit of rate = $$M{ s }^{ -1 }$$
    Let the rate be of the form
                $$r=K{ \left[ { N }_{ 2 }{ O }_{ 5 } \right]  }^{ x }$$
    Given unit of rate constant = $${ S }^{ -1 }$$
    For dimensional consistenty x=1
    and hence, the given reaction is a first order reaction.
              $$\Rightarrow $$ rate $$=K\left[ { N }_{ 2 }{ O }_{ 5 } \right] $$
    $$\Rightarrow \quad 1.02\times { 10 }^{ -4 }=\left[ { N }_{ 2 }{ O }_{ 5 } \right] 3.4\times { 10 }^{ -5 }$$
    $$\Rightarrow \quad \left[ { N }_{ 2 }{ O }_{ 5 } \right] =3$$
  • Question 9
    1 / -0
    The temperature dependence of rate constant (k) of a chemical reaction is written in terms of Arrhenius equation, $$k = A.e^{E^{\ast }/RT}. Activation energy $$(E^{\ast })$$ of the reaction can be calculated by plotting
  • Question 10
    1 / -0
    If 60% of a first order reaction was completed in 60 minutes, 50% of the same reaction would be completed in approximately: (log 4 = 0.60, log 5 = 0.69)
    Solution
    Rate of a general $${ 1 }^{ st }$$ order reaction.
                        $$\dfrac { -d\left[ A \right]  }{ dt } =k\left[ A \right] $$
         $$\Rightarrow \quad \int _{ { \left[ A \right]  }_{ 0 } }^{ { \left[ A \right]  }_{ t } }{ \dfrac { d\left[ A \right]  }{ \left[ A \right]  }  } =-\int _{ 0 }^{ t }{ kdt } $$
                         $$ln\dfrac { { \left[ A \right]  }_{ t } }{ { \left[ A \right]  }_{ 0 } } =-kt$$
         $$\Rightarrow \quad \boxed { 2.303log\frac { { \left[ A \right]  }_{ t } }{ { \left[ A \right]  }_{ 0 } } =-kt } \quad \longrightarrow \quad \left( 1 \right) $$
    Given : 60% of reaction completes in 60 minutes.
    Applying (1).
            $$2.303log\dfrac { 0.4{ \left[ A \right]  }_{ 0 } }{ \left[ { A }_{ 0 } \right]  } =-60k$$
            $$2.303log0.4\quad =\quad -60k$$
    $$\Rightarrow \quad $$$$k=\dfrac { -2.303log0.4 }{ 60 } $$
    Using the value of k
            $$2.303log\dfrac { 0.5{ \left[ A \right]  }_{ 0 } }{ { \left[ A \right]  }_{ 0 } } =-xk$$
            $$2.303log0.5=-x\left( \dfrac { -2.303log0.4 }{ 60 }  \right) $$
      $$\Rightarrow \quad \dfrac { 60log0.5 }{ log0.4 } =x$$
      $$\Rightarrow \quad x=\dfrac { 60(log5-1) }{ (log4-1) } $$
      $$\Rightarrow \quad x=\dfrac { 60(0.69-1) }{ 0.60-1 } $$ 
      $$\Rightarrow \quad x=\dfrac { 60\times 0.31 }{ 0.4 } $$
      $$\therefore \quad \boxed { x\quad \simeq \quad 45min. } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now