Rate of a general $${ 1 }^{ st }$$ order reaction.
$$\dfrac { -d\left[ A \right] }{ dt } =k\left[ A \right] $$
$$\Rightarrow \quad \int _{ { \left[ A \right] }_{ 0 } }^{ { \left[ A \right] }_{ t } }{ \dfrac { d\left[ A \right] }{ \left[ A \right] } } =-\int _{ 0 }^{ t }{ kdt } $$
$$ln\dfrac { { \left[ A \right] }_{ t } }{ { \left[ A \right] }_{ 0 } } =-kt$$
$$\Rightarrow \quad \boxed { 2.303log\frac { { \left[ A \right] }_{ t } }{ { \left[ A \right] }_{ 0 } } =-kt } \quad \longrightarrow \quad \left( 1 \right) $$
Given : 60% of reaction completes in 60 minutes.
Applying (1).
$$2.303log\dfrac { 0.4{ \left[ A \right] }_{ 0 } }{ \left[ { A }_{ 0 } \right] } =-60k$$
$$2.303log0.4\quad =\quad -60k$$
$$\Rightarrow \quad $$$$k=\dfrac { -2.303log0.4 }{ 60 } $$
Using the value of k
$$2.303log\dfrac { 0.5{ \left[ A \right] }_{ 0 } }{ { \left[ A \right] }_{ 0 } } =-xk$$
$$2.303log0.5=-x\left( \dfrac { -2.303log0.4 }{ 60 } \right) $$
$$\Rightarrow \quad \dfrac { 60log0.5 }{ log0.4 } =x$$
$$\Rightarrow \quad x=\dfrac { 60(log5-1) }{ (log4-1) } $$
$$\Rightarrow \quad x=\dfrac { 60(0.69-1) }{ 0.60-1 } $$
$$\Rightarrow \quad x=\dfrac { 60\times 0.31 }{ 0.4 } $$
$$\therefore \quad \boxed { x\quad \simeq \quad 45min. } $$