Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 32

Result Self Studies

Relations and Functions Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let A be a finite set containing n distinct elements. The number of relations that can be defined on A is.
  • Question 2
    1 / -0
    If $$f: R \rightarrow R$$ and $$g: R \rightarrow R$$ are defined by $$f(x) =3x -4$$, and  $$g(x)=2 + 3x$$, find $$(g^{-1}\, of^{-1})(5)$$.
    Solution
    Given, $$f(x)=3x-4$$
    Let $$y=3x-4$$
    $$ \Rightarrow x=\dfrac { y+4 }{ 3 } \\ \Rightarrow f^{ -1 }\left( x \right) =\dfrac { x+4 }{ 3 } $$
    Also given $$ g(x)=2+3x$$
    $$\Rightarrow  y=2+3x\\ \Rightarrow x=\dfrac { y-2 }{ 3 } \\ \Rightarrow g^{ -1 }\left( x \right) =\dfrac { x-2 }{ 3 } $$
    Thus $$g^{ -1 }\left( \text{of}^{ -1 } \right) \left( x \right) =\dfrac { \left( \dfrac { x+4 }{ 3 }  \right) -2 }{ 3 } $$
    $$ \Rightarrow g^{ -1 }\left( \text{of}^{ -1 } \right) \left( x \right) =\dfrac { x-2 }{ 9 } \\ \Rightarrow g^{ -1 }\left( \text{of}^{ -1 } \right) \left( 5 \right) =\dfrac { 5-2 }{ 9 } =\dfrac { 1 }{ 3 } $$
    So, option C is correct.
  • Question 3
    1 / -0

    Directions For Questions

    Let $$f: A\rightarrow B, g: B\rightarrow C$$ and $$h:C\rightarrow D$$ be three functions, then the function $$gof:A \rightarrow C$$ defined by gof(x) g[f(x)] for all $$x \epsilon A$$ is called the composition of f and g.

    ...view full instructions

    For what value of x is $$fog = gof$$ if $$f(x)=x - 2$$ and $$g(x)=x^3+3$$?
    Solution
    $$f(x)=x-2\\ g(x)={ x }^{ 3 }+3\\ f[g(x)]=g(x)-2\\ \Rightarrow fog={ x }^{ 3 }+3-2={ x }^{ 3 }+1\\ g[f(x)]={ \{ f(x)\}  }^{ 3 }+3\\ \Rightarrow gof={ (x-2) }^{ 3 }+3\\ fog=gof\\ { x }^{ 3 }+1={ (x-2) }^{ 3 }+3\\ { x }^{ 3 }-2={ (x-2) }^{ 3 }\\ { x }^{ 3 }-2={ x }^{ 3 }-8-6x(x-2)\\ { x }^{ 3 }-2={ x }^{ 3 }-8-6{ x }^{ 2 }+12x\\ \Rightarrow { x }^{ 2 }+1+2x=0\\ \Rightarrow { (x+1) }^{ 2 }=0\\ \Rightarrow x=-1$$
    So none of the above options are correct
  • Question 4
    1 / -0
    If $$f: R \rightarrow R$$ and $$g: R \rightarrow R$$ are defined by $$f(x) =2x +3, g(x)=x^2 + 7$$, what are the values of $$x$$ such that $$g(f(x))=8$$?
    Solution
    Given, $$f(x)=2x+3$$
    Also given $$ g(x)={ x }^{ 2 }+7$$
    Therefore, $$ g[f(x)]={ \left( f(x) \right)  }^{ 2 }+7$$
    $$ \Rightarrow g[f(x)]={ \left( 2x+3 \right)  }^{ 2 }+7$$
    Thus $$ { \left( 2x+3 \right)  }^{ 2 }+7=8\\ \Rightarrow { \left( 2x+3 \right)  }^{ 2 }=1\\ \Rightarrow 2x+3=\pm 1\\ \Rightarrow 2x=\pm 1-3\\ \Rightarrow 2x=-2,-4\\ \Rightarrow x=-1,-2$$
    Option C is correct.
  • Question 5
    1 / -0
    If $$*$$ is a binary operation in $$A$$ then
    Solution
    Given that $$*$$ is a binary operation in $$A$$
    Since $$*$$ is a binary operation in $$A$$ , $$A$$ must be closed under $$*$$
    Therefore correct option is $$A$$
  • Question 6
    1 / -0

    Directions For Questions

    Given a function $$f : A \rightarrow B$$; where $$A = \left \{1, 2, 3, 4, 5\right \}$$ and $$B = \left \{6, 7, 8\right \}$$.

    ...view full instructions

    Find number of all such functions $$y = f(x)$$ which are one-one?
    Solution
    One-one functions are those in which each element in the domain has a unique image in the range of the function.

    Here $$B$$ is the co-domain of the function which has lesser number of elements than the domain itself. This shows that it is not possible for the function to be one-one.
  • Question 7
    1 / -0
    If $$U=\left \{ 1,2,3,4,5,6,7,8,9,10 \right \}$$ and $$A=\left \{ 2,5,6,9,10 \right \}$$ then $${A}'$$ is
    Solution
    $$A'=U-A=\{1,3,4,7,8\}$$
  • Question 8
    1 / -0
    If $$f : [ 1, \infty) \rightarrow [2, \infty) $$ is given by $$f(x) = x + \dfrac{1}{x},$$ then $$f^{-1}(x)$$ is equal to
    Solution

    $$f(x)=x+\dfrac { 1 }{ x } \\ y=x+\dfrac { 1 }{ x } \\ xy={ x }^{ 2 }+1\\ { x }^{ 2 }-xy+1=0$$

    Using quadratic formula 

    $$x=\dfrac { y\pm \sqrt { { y }^{ 2 }-4(1)(1) }  }{ 2(1) } \\ x=\dfrac { y\pm \sqrt { { y }^{ 2 }-4 }  }{ 2 } $$

    $$\Rightarrow x=\dfrac { y+\sqrt { { y }^{ 2 }-4 }  }{ 2 } \\ \Rightarrow f^{ -1 }\left( x \right) =\dfrac { x+\sqrt { { x }^{ 2 }-4 }  }{ 2 } $$

  • Question 9
    1 / -0
    The inverse of the function $$y=\cfrac { { 2 }^{ x } }{ 1+{ 2 }^{ x } } $$ is
    Solution
    Given, 
    $$y=\cfrac { { 2 }^{ x } }{ 1+{ 2 }^{ x } } \Rightarrow y+{ 2 }^{ x }y={ 2 }^{ x }$$
    $$\Rightarrow y={ 2 }^{ x }(1-y)\Rightarrow { 2 }^{ x }=\cfrac { y }{ 1-y } $$
    Taking log on both sides at base $$2$$, we get
    $$\log _{ 2 }{ \left( { 2 }^{ x } \right)  } =\log _{ 2 }{ \cfrac { y }{ 1-y }  } $$
    $$\Rightarrow x=\log _{ 2 }{ \cfrac { y }{ 1-y }  } $$
    $$\therefore$$ Inverse is $$\log _{ 2 }{ \cfrac { y }{ 1-y }  } $$
  • Question 10
    1 / -0
    The number of real linear functions $$f(x)$$ satisfying $$f\left\{ f(x) \right\} =x+f(x)$$
    Solution
    Let $$f(x) = ax+b $$
    $$f(f(x))=a(ax+b)+b = a^2x+ab+b$$

    Given, $$f(f(x))=x+f(x)$$
    $$\implies a^2x+ab+b = x+ ax+b$$
    $$\implies (a^2-a-1)x+ab=0$$
    Since above equation is valid for all values of x, we have 
    $$a^2-a-1 =0$$ and $$ ab=0$$

    $$a^2-a-1 =0$$
    $$a=\dfrac{ 1\pm \sqrt{1+4}}{2}$$
    $$\implies a=\dfrac{ 1\pm \sqrt{5}}{2}$$

    $$ab=0$$
    Since $$a$$ is non-zero,
    $$\implies b=0$$

    $$f(x) =\dfrac{ 1+ \sqrt{5}}{2}x$$ and $$f(x) =\dfrac{ 1- \sqrt{5}}{2}x$$ satisfy the condition.
    Hence the answer is option (D)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now