Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 38

Result Self Studies

Relations and Functions Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The solution of $$8x\equiv 6(mod \  14) $$ is
    Solution
    Since,$$8\mathrm{x}\equiv 6(mod \ 14)$$
    i.e., $$8\mathrm{x}-6=14\mathrm{k}$$ for $$\mathrm{k}\in \mathrm{I}$$.
    $$ \Rightarrow 8x = 14k+6$$
    $$ \Rightarrow 4x = 7k+3$$
    The values $$6$$ and $$13$$ satisfy this equation (when $$k =3$$ and $$k=7$$), 
    while $$8, 14$$ and $$16$$ do not.
  • Question 2
    1 / -0
    If $$f(x)=\dfrac{e^{x}+e^{-x}}{2}$$, then the inverse of $$f(x)$$ is
    Solution
    Let $$f\left ( x \right )=\dfrac{e^{x}+e^{-x}}{2}=y$$
    $$\therefore x=f^{-1}\left ( y \right )$$
    $$e^{x}+e^{-x}=2y$$
    $$e^{2x}-2y e^{x}+1=0$$
    $$\Rightarrow e^{x}=\dfrac{2y \pm \sqrt{4y^{2}-4}}{2}$$
    $$e^{x}=\dfrac{y\pm \sqrt{y^{2}-1}}{1}$$
    Range of $$f$$ is 
    $$\left ( -\infty ,\infty  \right )\Rightarrow e^{x}=\dfrac{y+\sqrt{y^{2}-1}}{1}$$
    As if we take $$e^{x}=\dfrac{y-\sqrt{y^{2}-1}}{1}$$, which is always small
    $$\therefore x=\log _{e}\left ( \dfrac{y+\sqrt{y^{2}-1}}{1} \right )$$$$\therefore f^{-1}\left ( x \right )=\log_{e}\left ( \dfrac{x+\sqrt{x^{2}-1}}{1} \right )$$
  • Question 3
    1 / -0
    If $$f(x)=(1-x)^{1/2}$$ and $$g(x)= \ln(x)$$  then  the  domain  of $$(gof)(x)$$ is
    Solution
    Given $$f(x)=(1-x)^{\frac{1}{2}}$$ and $$g(x)=ln(x)$$

    $$gof(x)$$
    $$=g(f(x))$$
    $$=\ln\left ( 1-x \right )^{1/2}$$
    $$=\dfrac{1}{2}\ln\left ( 1-x \right )$$
    $$\therefore$$ For the composite function to be defined $$1-x>0$$
    $$x<1$$
    $$\therefore$$ Domain is $$\left ( -\infty ,1 \right )$$
  • Question 4
    1 / -0
    If $$f:R^{+}\rightarrow R$$ such that $$f(x)=\log_{5} x$$ then $$f^{-1}(x)=$$
    Solution
    $$f\left ( x \right )=y$$

    $$\Rightarrow \log _{5}x=y$$

    $$\Rightarrow \dfrac{\log x}{\log 5}=y$$

    $$\Rightarrow \log x=y\log 5$$

    $$\Rightarrow e^{\log x}=e^{y\log 5}$$

    $$\Rightarrow e^{\log x} =e^{\log 5^{y}}$$

    $$[\because a \log x = \log x^{a}$$]

    $$\Rightarrow x=5^{y}=f^{-1}\left ( y \right )$$

    $$\therefore f^{-1}\left ( x \right )=5^{x}$$
  • Question 5
    1 / -0
    If $$f(x)=\dfrac{x+1}{x-1}(x\neq 1)$$ then $$fofofof(x)=$$
    Solution
    $$fofofof\left(x\right)=fofof\left(\dfrac{x+1}{x-1}\right)$$
    $$=fof\left(\dfrac{\dfrac{x+1}{x-1}+1}{\dfrac{x+1}{x-1}-1}\right)=fof\left(\dfrac{2x}{2}\right)$$
    $$=fof\left(x\right)$$
    $$=f\left(\dfrac{x+1}{x-1}\right)=x$$
  • Question 6
    1 / -0
    If $$f:[1,\infty )\rightarrow B$$  defined  by the function $$ f(x)=x^{2}-2x+6$$ is a surjection, then $$B$$ is equals to
    Solution
    $$f(x)=x^2-2x+6$$ is a surjection.
    So the range of $$f(x)$$ will be equal to its codomain.
    $$f(x)=x^2-2x+6$$
    $$f^1(x)=2x-2$$
    $$=2(x-1)$$
    $$f(x)$$ will be increasing when $$x\geqslant 1$$.
    $$\therefore f(1)=1-2+6$$
    $$=5$$
    $$\therefore B=[5, \infty)$$

  • Question 7
    1 / -0
    If $$f:R\rightarrow R^{+}$$ then $$\displaystyle f(x)=\left(\dfrac{1}{3}\right)^{x}$$, then $$f^{-1}(x)=$$
    Solution
    Let $$\displaystyle f(x)=\left(\frac{1}{3}\right)^{x}=y$$
    Taking logarithm on both sides, 
    $$\displaystyle x\log \frac{1}{3}=\log y$$
    $$\displaystyle \Rightarrow x=\frac{\log y}{\log \frac{1}{3}}$$
    $$\displaystyle \Rightarrow x=\log _ { 1/3 } y\quad \quad \quad \left[ \because \frac { \log  b }{ \log  a } =\log _{ a }{ b }  \right] $$
    $$\therefore f^{-1}\left ( x \right )=\log _{1/3}x$$
  • Question 8
    1 / -0
    If $$ X =\{1, 2,3,4,5\} $$ and $$Y =\{1,3,5,7,9\}$$, determine which of the following sets represent a relation and also a mapping?
    Solution
    Here we will check all options one by one:
    Option A:
    $$R_1 = \{(x,y): y= x+2, x\in X, y\in Y\}$$
    $$\implies \mathrm{R}_{1}=\{(1,3),(2, 4),(3,5),(4,6),(5,7)\}$$
    Since $$4$$ amd $$6$$ are the images of $$2$$ and $$4$$ respectively but $$4$$ and $$6$$ do not belong to $$Y$$
    $$\therefore (2, 4),(4,6)\not\in X \times Y$$
    Hence $$R_{1}$$ is not a relation as well as not a mapping.

    Option B:
    $$R_{2}$$: It is a relation but not a mapping because the element $$1$$ has two different images.

    Option C:
    $$R_{2}$$: It is a relation but not a mapping because the element $$3$$ has two different images.

    Option D:
    $$R_{4}$$: It is both a relation and a mapping because every element in $$X$$ is mapped to the elements in $$Y$$. Also, every element of $$X$$ has a one and only one image in $$Y$$ and every element in $$Y$$ has its pre-image in $$X$$. Hence, it is also one-one and onto mapping and hence it is a bijection.
  • Question 9
    1 / -0
    If A $$=$${$$x : x^{2}-3x+2= 0$$}, and $$R$$ is a universal relation on $$A$$, then $$R$$ is
    Solution
    Consider, $$x^2-3x+2=0$$
    $$\implies x^2-2x-x+2=0$$
    $$\implies (x-2)(x-1)=0$$
    $$\implies x=1,2$$
    $$\therefore A=\{1,2\}$$
    Also R is universal relation on set A, then every element of set A is related every other element of A
    So $$R= \{(1,1), (1,2), (2,1), (2,2)\}$$.
  • Question 10
    1 / -0
    If $$f(x)=2+x^{3}$$, then $$f^{-1}(x)$$ is equal to
    Solution
    Let $$f\left ( x \right )=y$$
    $$\Rightarrow 2+x^{3}=y$$
    $$\Rightarrow x^{3}=y-2$$
    $$\Rightarrow x=\left ( y-2 \right )^{1/3}$$
    $$\therefore f^{-1}\left ( y \right )=x$$$$=\left ( y-2 \right )^{{1}/{3}}$$
    $$\therefore f^{-1}\left ( x \right )=\left ( x-2 \right )^{{1}/{3}}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now