Self Studies
Selfstudy
Selfstudy

Relations and F...

TIME LEFT -
  • Question 1
    1 / -0

    If $$f(x)=\displaystyle \dfrac{x}{\sqrt{1-x^{2}}},g(x)=\displaystyle \dfrac{x}{\sqrt{1+x^{2}}} $$, then $$(fog)(x)=$$       

  • Question 2
    1 / -0

    If $$f(x)=1+x+x^{2}+x^{3}+\ldots\ldots $$ for $$\left | x \right |<1$$  then $$f^{-1}(x)=$$

  • Question 3
    1 / -0

    If the function is $$f:R\rightarrow R,  g:R\rightarrow R$$ are defined as $$f(x)=2x+3, g(x)=x^{2}+7$$  and  $$f[g(x)]=25$$  then  $$x=$$    

  • Question 4
    1 / -0

    If $$f(x)=\displaystyle \frac{2^{x}+2^{-x}}{2^{x}-2^{-x}}$$,  then  $$f^{-1}(x)=$$

  • Question 5
    1 / -0

    I: If $$f:A\rightarrow B$$ is a bijection only then does $$f$$ have an inverse function
    II: The inverse function $$f:R^{+}\rightarrow R^{+}$$ defined by $$f(x)=x^{2}$$ is $$f^{-1}(x)=\sqrt{x}$$

  • Question 6
    1 / -0

    If $$F(n)=(-1)^{k-1}(n-1), G(n)=n-F(n)$$ then $$ (GoG)(n)=$$ (where $$k$$ is odd)

  • Question 7
    1 / -0

    If $$f(x)=\dfrac{x}{\sqrt{1-x^{2}}}$$, then $$ (fof)(x)=$$

  • Question 8
    1 / -0

    If $$f(x)=\sin^{-1}\left \{ 3-(x-6)^{4} \right \}^{1/3}$$  then $$ f^{-1}(x)=$$

  • Question 9
    1 / -0

    Which of the following functions defined from $$(-\infty ,\infty )$$ to $$ (-\infty ,\infty )$$ is invertible ?

  • Question 10
    1 / -0

    If $$f(x)=\dfrac{x}{\sqrt{1+x^{2}}}$$ then $$fofof(x)=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now