Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 41

Result Self Studies

Relations and Functions Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    lf $${f}\left({x}\right)=\sin^{2}{x}+\sin^{2}\left({x}+\displaystyle \dfrac{\pi}{3}\right)+ \cos x \cos \left({x}+\displaystyle \dfrac{\pi}{3}\right)$$ and $${g}\left(\displaystyle\dfrac{5}{4}\right)=1$$, $$g\left(1\right) = 0 $$ then $$\left({g}{o}{f}\right)\left({x}\right)=$$
    Solution
    $$\displaystyle {f}\left({x}\right)=\sin^{2}{x}+\left(\sin{x}\cos\frac{\pi}{3}+ \cos{x} \displaystyle \sin\frac{\pi}{3}\right)^{2}+ {c}{o}{s} {x}\left(\displaystyle \cos {x}\cos\frac{\pi}{3}-\sin {x}\sin\frac{\pi}{3}\right)$$
    $$\displaystyle =\sin ^{ 2 }{ x } +{ \left[ \frac { \sin{ x } }{ 2 } +\frac { \sqrt { 3 } \cos{ x } }{ 2 }  \right]  }^{ 2 }+\frac { \cos^{ 2 }{ x } }{ 2 } -\frac { \sqrt { 3 }  }{ 2 } \cos x \sin x$$
    $$\displaystyle =\sin ^{ 2 }{ x } +\frac { \sin ^{ 2 }{ x }  }{ 4 } +\frac { 3 }{ 4 } \cos ^{ 2 }{ x } +\frac { \sqrt { 3 }  }{ 2 } \sin  x\cos{ x }+\frac { \cos ^{ 2 }{ x }  }{ 2 } -\frac { \sqrt { 3 }  }{ 2 } \sin { x\cos { x }  } $$
    $$=\displaystyle \frac{5}{4}\left(\sin^{2}{x}+\cos^{2}{x}\right)=\frac{5}{4}$$
    $$\displaystyle \therefore $$   $$[{g}{o}{f}]\left({x}\right)={g}[{f}\left({x}\right)]={g}\left(\displaystyle \frac{5}{4}\right)=1$$
  • Question 2
    1 / -0
    If $$ f : R \rightarrow R$$ is defined by $$f(x)=2x-2,$$  then $$(f\circ f) (x) + 2 =$$
    Solution
    Let $$f : R \rightarrow R$$ is defined by $$f(x)=2x-2$$. Then  
    $$(f\circ f)(x)+2= f[f(x)]+2$$
    $$=f(2x-2)+2$$
    $$=2(2x-2)-2+2$$
    $$=2f(x)$$
  • Question 3
    1 / -0
    If $$f(x) =\displaystyle \frac{x}{\sqrt{1-x^2}}, g(x)=\frac{x}{\sqrt{1+x^2}}$$ then $$(f\circ g)(x) =$$
    Solution
    Let $$x= \tan \theta$$
    $$(f\circ g)(x)=f[g(x)] = f[g(\tan  \theta)]$$.
    Since $$\displaystyle  g(x) = \frac{x}{\sqrt{1+x^2}}$$, we have
    $$f[g(\tan  \theta)]=\displaystyle f \left [ \frac{\tan  \theta}{\sqrt{1+\tan^2 \theta}} \right ] = f \left [ \frac{\tan \theta}{\sec \theta} \right ]=f (\sin \theta)$$
    Also since $$f(x)=\cfrac{x}{\sqrt{1-x^2}}$$ , we have
    $$\displaystyle f (\sin \theta) = \frac{\sin \theta}{\sqrt{1-\sin^2 \theta}}$$
    $$=\tan \theta =x$$
  • Question 4
    1 / -0
    Set $$A$$ has $$n$$ elements. The number of functions that can be defined from $$A$$ into $$A$$ is:
    Solution
    The number of functions that can be defined from a set into another set can be found by $${ \text{(Number of elements in co-domain)} }^{ \text{Number of elements in domain} }$$

    Since, set $$A$$ has $$n$$ elements, we have
    Number of elements in co-domain $$=$$ Number of elements in domain $$= n (A) = n$$.
    Therefore, number of functions that can be defined from $$A$$ into $$A$$ $$=n(A)^{n(A)}= n^{n}$$.
  • Question 5
    1 / -0
    If $$f(x)=\log  x,  g(x) = x^3$$ then $$f[g(a)]+f[g(b)]= $$
    Solution
    Given that $$g(x)=x^3$$. Therefore,
    $$f[g(a)]+f[g(b)]=f(a^3)+f(b^3)$$.
    Since $$f(x)=\log x$$, we have 
    $$f(a^3)+fb^3=\log a^3+\log b^3$$
    $$=\log (a^3b^3)=\log ((ab)^{3})$$
    $$=f[g(ab)]$$
  • Question 6
    1 / -0
    If $$f:R \rightarrow R$$ and $$g : R \rightarrow R$$ are defined by $$f(x)=2x+3$$ and $$g(x)=x^2+7$$, then the values of $$x$$ such that $$g(f(x)) =8$$ are:
    Solution
    Since $$f(x)=2x+3$$,
    $$g[f(x)]=8  \Rightarrow g(2x+3)=8$$.
    Also since $$g(x)=x^2+7$$,
    $$g(2+3x)=8\Rightarrow (2x+3)^2+7=8$$
    $$\Rightarrow 2x+3 = \pm 1$$
    $$\Rightarrow x=-1$$ or $$-2$$.
  • Question 7
    1 / -0
    If $$f : R \rightarrow R$$ and $$g :R \rightarrow R$$ are defined by $$f(x) = x -[x]$$ and $$g(x) = [x]$$ for $$x \in R$$, where $$[x]$$ is the greatest integer not exceeding $$x$$, then for every $$x \in R, f(g(x)) =$$
    Solution
    Since $$f(x)=x-[x]$$, we have
    $$f[g(x)] =g(x)-[g(x)]$$
    Also since $$g(x)=[x]$$,we have
    $$g(x)-[g(x)]=[x] - [[x]]$$.
    Here, $$[x]$$ is the greatest integer not exceeding $$x$$. Therefore,
    $$[[x]]=[x]$$ and hence,
    $$[x]-[[x]]=[x]-[x]=0$$
  • Question 8
    1 / -0
    If $$y=f(x) = \dfrac{2x-1}{x-2}$$, then $$f(y)=$$
    Solution
    $$\displaystyle f(y) = \frac{2y-1}{y-2} = \frac{2 \left ( \dfrac{2x-1}{x-2} \right ) -1}{\left ( \dfrac{2x-1}{x-2} \right ) -2}$$
    $$=\displaystyle \frac{4x-2-x+2}{2x-1-2x+4} = \frac{3x}{3} = x$$
  • Question 9
    1 / -0
    Let R be the relation in the set N given by $$=\left \{ (a, b):a=b-2, b >6 \right \}$$. Choose the correct answer.
    Solution
    $$(a,b)∈R$$ only if $$a=b−2$$ and $$b>6$$
    $$(6,8)∈R$$ as $$6=8−2$$ and $$8 >6$$
    Hence $$(c)$$ is the correct alternative
  • Question 10
    1 / -0
    If $$X=\left \{ 1, 2, 3, 4, 5 \right \}$$ and $$Y=\left \{ 1, 3, 5, 7, 9 \right \}$$, determine which of the following sets represent a relation and also a mapping.
    Solution
     $$R_1={(1,3),(2,4),(3,5),(4,6),(5,7)}$$
    Since $$4$$ and $$6$$ do not belong to $$Y$$
    $$(2,4),(4,6)∉R_1$$
    $$R_1={(1,3),(3,5),(5,7)}⊂A×B$$
    Hence $$R_1$$ is a relation but not a mapping as the elements $$2$$ and $$4$$ do not have any image.
    $$R_2$$ :  It is certainly a mapping and since every mapping is a relation, it is a relation as well.
    $$R_3$$: It is a relation being a subset of $$A×B$$ but the elements $$1$$ and $$3$$ do not have a unique image and hence it is not mapping.
    $$R_4$$ : It is both a mapping and a relation. Each element in A has a unique image. It is also one-one and onto mapping and hence a bijection
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now