Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 42

Result Self Studies

Relations and Functions Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$f  : R \rightarrow R$$ is a function defined by $$f(x)=10x-7$$. If $$g=f^{-1}$$ then $$g(x) = $$
    Solution
    Here, $$f(x)=10x-7$$
    which is clearly bijective as linear in $$x$$.
    Let $$y=f(x)$$. So,
    $$y=10x-7$$
    $$\Rightarrow y+7=10x$$
    $$\Rightarrow \displaystyle \frac{y+7}{10} = x =g(y)$$ as $$(f(x)=y\Rightarrow x=f^{-1}(y))$$
    $$\Rightarrow g(x) = \dfrac{x+7}{10}$$.
  • Question 2
    1 / -0
    If $$f(x) = \dfrac{2x+5}{x^{2} + x + 5}$$, then $$f\left [ f(- 1 ) \right ]$$ is equal to
    Solution
    Given expression is $$ f(x)=\dfrac { 2x+5 }{ { x }^{ 2 }+x+5 } $$
    $$ \therefore  f(-1)=\dfrac { 2\times (-1)+5 }{ (-1)^{ 2 }+(-1)+5 } =\dfrac { 3 }{ 5 } $$
    $$ \therefore  f\left( f\left( -1 \right)  \right) =\dfrac { 2\times \dfrac { 3 }{ 5 } +5 }{ \left( \dfrac { 3 }{ 5 }  \right) ^{ 2 }+\dfrac { 3 }{ 5 } +5 } =\dfrac { 155 }{ 149 }$$
  • Question 3
    1 / -0
    If $$f : R \rightarrow R$$ and $$g : R \rightarrow R$$ are defined by $$f(x)=3x-4$$ and $$g(x)=2+3x$$ then $$(g^{-1}\circ f^{-1})(5)=$$
    Solution
    $$ f(x)=3x-4$$
    $$ \Rightarrow { f }^{ -1 }(x)=\dfrac { x+4 }{ 3 } $$;
    $$ g(x)=2+3x$$
    $$ \Rightarrow  g^{ -1 }(x)=\dfrac { x-2 }{ 3 } $$
    $$ { f }^{ -1 }(5)=\dfrac { 5+4 }{ 3 } =3$$
    $$ \left( { g }^{ -1 }o{ f }^{ -1 } \right) (5)=g^{ -1 }\left[ { f }^{ -1 }(5) \right] =g^{ -1 }(3)$$
    $$ =\dfrac { 3-2 }{ 3 } =\dfrac { 1 }{ 3 } $$
  • Question 4
    1 / -0
    If $$ABC\sim PQR$$, then AB:PQ =
    Solution

  • Question 5
    1 / -0
    If $$f$$ and $$g$$ are one-one functions from $$R\to R$$, then
    Solution
    Let $${x_1},{x_2} \in R$$ be two distinct elements, then $$g\left( {{x_1}} \right) \ne g\left( {{x_2}} \right)$$, as $$g$$ is one-one function. Similarly $$f\left( {g\left( {{x_1}} \right)} \right) \ne f\left( {g\left( {{x_2}} \right)} \right)$$ as $$f$$ is also one-one function. 
    Hence, $$f\circ g$$ is one-one function.
    Note that $$f+g$$ and $$f\cdot g$$ may not one-one functions even if $$f$$ and $$g$$ are one one. For example consider $$f\left( x \right) = x$$ and $$g\left( x \right) =- x$$, then  $$f+g$$ and $$f\cdot g$$  are not one-one.
  • Question 6
    1 / -0
    If $$f :  R^+ \rightarrow R$$ such that $$f(x) = \log_3 x$$ then $$f^{-1}(x) = $$
    Solution
     Let $$f^{-1}(x)=y$$
    $$\Rightarrow x=f(y)=\log_3y$$
    $$\Rightarrow y = 3^x$$
    Therefore,
    $$y= f^{-1}(x)=3^x$$
  • Question 7
    1 / -0
    Which of the following functions are one-one?
    Solution
    For all even powered function,
    $$f(x_{1})=f(x_{2})$$ where $$x_{1}=\pm(x_{2})$$
    Hence, the only possible one-one function is $$f(x)=x^3+4$$
    $$f(x)$$ is a strictly increasing function. So, it is one-one.
  • Question 8
    1 / -0
    A mapping function $$f:X\rightarrow Y$$ is one-one, if
    Solution
    For a function to be one one
    $$f(x_{1})=f(x_{2})$$
    Implies that
    $$x_{1}=x_{2}$$
    Hence the answer is option B
  • Question 9
    1 / -0
    Let $$\displaystyle f:R\rightarrow A=\left \{ y: 0\leq y< \dfrac{\pi}{2} \right \}$$ be a function such that $$\displaystyle f(x)=\tan^{-1}(x^{2}+x+k),$$ where $$k$$ is a constant. The value of $$k$$ for which $$f$$ is an onto function is 
    Solution
    For $$f$$ to be an onto function, Range and co-domain of $$f$$ should be equal

    $$\Rightarrow f(x)\ge 0 \forall x\in R$$

    $$\Rightarrow \tan^{-1}(x^2+x+k)\ge 0$$

    For the above equation to be valid for all $$x$$

    We must have, the discriminant of $$x^2+x+k=0$$, is zero

    $$ b^2-4ac=0$$

    $$\Rightarrow 1-4k=0\Rightarrow k =\dfrac{1}{4}$$
  • Question 10
    1 / -0
    If $$f:R\rightarrow R$$ given by $$f(x)={ x }^{ 3 }+({ a+2)x }^{ 2 }+3ax+5$$ is one-one, then $$a$$ belongs to the interval
    Solution
    If $$ f(x) $$ is one one then $$ f'\left( x \right) $$ should be either positive or negative for all $$ x $$.
    $$f'\left( x \right) = 3{ x }^{ 2 }+2(a+2)x+3a$$
    $$\Rightarrow D = 4{ (a+2) }^{ 2 }-4\times3\times3a<0$$
    $$\Rightarrow$$ $${ a }^{ 2 }-5a+4<0$$
    $$\Rightarrow$$ $$(a-1)(a-4)<0$$
    Hence, $$a\in \left( 1,4 \right) $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now