Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 51

Result Self Studies

Relations and Functions Test - 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$f(x) =\frac {ax+b} {cx+d}$$. Then fof(x) = x provided that.
    Solution
    $$f(f(x))=\dfrac{af(x) + b}{cf(x)+d}$$

    $$f(f(x))=\dfrac{a\dfrac{ax+b}{cx+d} + b}{c\dfrac{ax+b}{cx+d}+d}$$

    $$f(f(x))=\dfrac{a^2x + ab+bcx+bd}{acx+bc+d^2+dcx}=x$$

    $$\Rightarrow a^2x+ab+bcx+bd=acx^2+bcx+d^2x+dcx^2$$

    Given $$a=-d$$, the above equation can also be verified


  • Question 2
    1 / -0
    If $$f(x) =\dfrac {1}{1-x}, x \neq 0, 1$$ then the graph of the function $$y = f[f\{f(x)\}]$$ for $$x > 1 $$  is
    Solution
    Given $$f(x) = \cfrac{1}{1-x}$$
    $$\displaystyle \Rightarrow f\{f(x)\} = \frac{1}{1-f(x)} = \frac{1}{1-\frac{1}{1-x}}=\frac{1-x}{1-x-1}=1-\frac{1}{x}$$
    $$\displaystyle \therefore f[f\{f(x)\}] = \frac{1}{1- f\{f(x)\}}=\frac{1}{1-1+\frac{1}{x}}=x$$,  which is a straight line.
  • Question 3
    1 / -0
    If $$f : R\rightarrow R, f(x) = 3x-4$$, then $$f^{-1}(x)$$ is equal to
    Solution
    Let $$y=f^{ -1 }\left( x \right) $$

    $$ \Rightarrow x=f\left( y \right) =3y-4$$

    $$ \Rightarrow y=\dfrac { x+4 }{ 3 } $$
  • Question 4
    1 / -0
    If $$f : [0, \Pi ] \rightarrow  [-1, 1]$$, f(x) = cosx, then f is.
    Solution
    f takes all values from $$[-1,1]$$ while travelling from $$[0,\pi]$$. None of the values are repeated either. 

    Hence it is one-one and onto.
  • Question 5
    1 / -0
    If $$f(x) = \left\{\begin{matrix} 1&x \in Q \\ 0 &x \notin  Q\end{matrix}\right.$$ then $$fof(\sqrt 3 )$$ is equal to
    Solution
    We know $$\sqrt{3}$$ is an irrational number

    Thus $$f(\sqrt{3}) =0$$ and $$0$$ is a rational number

    Hence $$fof(\sqrt 3 )= f(0) = 1$$
  • Question 6
    1 / -0
    If $$f : R\rightarrow R $$ and $$f(x) = x^2 - 5x + 9$$, then $$f^{-1}(9)$$ equals
    Solution
    $$f^{-1}(9)$$ will be the roots of

    $$x^2-5x+9 = 9$$

    $$\Rightarrow x(x-5)=0$$

    $$\Rightarrow x =0, 5$$

    Hence $$f^{-1}(9) = 0,5$$
  • Question 7
    1 / -0
    If functions $$f\left ( x \right )$$ and $$g\left ( x \right )$$ are defined on $$R\rightarrow R$$ such that
    $$f(x)=x+3, x$$ $$\in  $$ rational
             $$ =4x, x$$ $$\in $$ irrational
    $$g(x)=x+\sqrt{5}$$, x$$\in $$ irrational
          $$  =-x, x$$ $$\in $$ rational
    then $$\left ( f-g \right )\left ( x \right )$$ is
    Solution
    $$f\left( x \right) =x+3, x\epsilon$$  rational 
              $$=4x, x\epsilon$$  irrational

    $$g\left( x \right) =x+\sqrt { 5 } , x \epsilon$$  irrational
              $$= -x,x\epsilon$$  rational 

    $$(f-g)(x)=2x+3, x\ \epsilon$$  rational
                         $$+3x-\sqrt { 5\quad  } x\quad \epsilon$$ irrational

    For one-one; 
    We know that one one function is a $${ f }^{ \underline { n }  }$$ for which every element of the range of the function corresponds to exactly one element of the domain.
     
    But in this case this is not true as for all rational nos. the$$ { f }^{ \underline { n }  }$$ is one one but for irrational $${ f}^{ \underline { n }  }$$, every elements of the range does not corresponds to exactly one element of the domain. 

    $$(f-g)(x)\neq  (f-g)({ x }^{ \prime  })$$         when $$x \epsilon$$ rational and 
                                                                   $$x \epsilon$$ irrational
    for onto:
    The $${ f }^{ \underline { n }  }(f-g)(x)$$ does not cover the whole range of the function.
  • Question 8
    1 / -0
    Let $$f:\left [ 1, \infty  \right )\rightarrow \left [ 3, \infty  \right )$$ & $$f\left ( x \right )=\left ( \log_{2}x \right )^{2}+2\log_{2}x+3,$$ then $$f^{-1}\left ( x \right )$$ is equal to
  • Question 9
    1 / -0
    If $$\displaystyle f\left ( x \right )=\left ( 1-x^{3} \right )^{\frac{1}{3}}$$, then find $$fof(x)$$
    Solution
    Given, $$\displaystyle f\left ( x \right )=\left ( 1-x^{3} \right )^{\frac{1}{3}}$$
    Therefore, $$\displaystyle fof\left ( x \right )=f\left [ f\left ( x \right ) \right ]$$
    $$\displaystyle =f\left ( \left ( 1-x^{3} \right )^{\frac{1}{3}} \right )=\left [ 1-\left \{ \left ( 1-x^{3} \right )^{\frac{1}{3}} \right \}^{3} \right ]^{\frac{1}{3}}$$
    $$\displaystyle =\left [ 1-\left ( 1-x \right )^{3} \right ]^{\frac{1}{3}}=\left ( x^{3} \right )^{\frac{1}{3}}=x$$
  • Question 10
    1 / -0
    Let $$\displaystyle f\left ( x \right )=\frac{3}{2}+\sqrt{x-\frac{3}{4}}$$ be a function and $$g\left ( x \right )$$ be another function such that $$g\left ( f\left ( x \right ) \right )=x,$$ then the value of $$g\left ( 20 \right )$$ will be
    Solution
    $$g\left ( x \right )$$ is inverse of $$f\left ( x \right )$$

    $$\Rightarrow $$ $$\displaystyle x=\frac{3}{2}+\sqrt{y-\frac{3}{4}}$$

    $$\Rightarrow $$ $$\displaystyle y=\left ( x-\frac{3}{2} \right )^2+\frac{3}{4}=f^{-1}(x)=g(x)$$

    $$\therefore $$ $$\displaystyle g\left ( 20 \right )=\left ( 20-\frac{3}{2} \right )^{2}+\frac{3}{4}=343$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now