Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 59

Result Self Studies

Relations and Functions Test - 59
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$A=\left\{ x\in R|x\ge 0 \right\} $$. A function $$f:A\rightarrow A$$ is defined by $$f(x)={ x }^{ 2 }$$. Which one of the following is correct?
    Solution
    $$f\left( x \right) ={ x }^{ 2 }\\ \Longrightarrow f^{ -1 }\left( x \right) =\sqrt { x } $$
    Clearly, $$f^{ -1 }\left( x \right) $$ exists in the domain of definition of $$f$$.
    Also, $$f\left( x \right)$$ is not its own inverse.
    Option C is the answer.
  • Question 2
    1 / -0
    Let $$f(x)=\dfrac{x+1}{x-1}$$ for all $$x \neq 1$$. 
    Let
    $$f^1(x)=f(x), f^2(x)=f(f(x))$$ and generally
    $$f^n(x)=f(f^{n-1}(x)) $$ for $$n > 1$$
    Let $$P= f^1(2)f^2(3)f^3(4)f^4(5)$$
    Which of the following is a multiple of P ?
    Solution
    $$f^{ 1 }(x)=\dfrac { x+1 }{ x-1 } $$ 

    $$f^{ 2 }(x)=\dfrac { \dfrac { x+1 }{ x-1 } +1 }{ \dfrac { x+1 }{ x-1 } -1 }$$ 

    $$=\dfrac { 2x }{ 2 } =x$$
    Now, $$f^{3}(x)=f(f^{2}(x))=f(x)=f^{1}(x)$$
    This will repeat so,
    $$f^{ 3 }(x)=f^{ 1 }(x)$$  $$ f^{ 4 }(x)=f^{ 2 }(x)$$ 
    We have,
    $$f^{ 1 }(2)=3,$$ $$ f^{ 2 }(3)=3,$$ $$ f^{ 3 }(4)=\dfrac { 5 }{ 3 }, $$ $$f^4(5)=5$$
    So, $$P= 75$$ and $$375$$ is the multiple of $$75$$.
    Hence, the answer is $$375$$.
  • Question 3
    1 / -0
    If $$f : (3, 4) \rightarrow (0, 1)$$ is defined by $$f(x)=x-\left[x\right]$$, where $$\left[x\right]$$ denotes the greatest integer function, then $${f}^{-1}(x)$$ is
    Solution
    $$f\left( x \right) =x-\left[ x \right] \\ f:(3,4)\rightarrow (0,1)$$
    For $$x\in (3,4)$$
    $$\left[ x \right] =3\\ \Rightarrow f\left( x \right) =x-3\\ y=x-3\\ x=y+3\\ f^{ -1 }\left( x \right) =x+3$$
    So option $$D$$ is correct.
  • Question 4
    1 / -0
    Let $$M$$ be the set of all $$2 \times 2$$ matrices with entries from the set of real numbers $$R$$. Then the function $$ f : M \rightarrow R$$ defined by $$f\left( A \right) =\left| A \right|$$ for every $$ A\in M$$, is
    Solution
    $$ f : M \rightarrow R$$ defined by $$f\left( A \right) =\left| A \right|$$ for every $$ A\in M$$
    The function is the determinant of the matrix
    We know that, two different matrices can have a same determinant
    For example, $$A=\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$ and  $$B=\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
    Then $$|A|=1=|B|$$, but $$A\neq B$$
    So, the function will not be one-one.
    Now, determinants can have any real values, so range of the function will be $$R$$.
    Thus, the function will be onto.
    Hence, option D is correct
  • Question 5
    1 / -0
    Consider the following statements :
    Statement 1 : The function $$f:R \rightarrow R$$ such that $$f(x)=x^3$$ for all $$x\in R$$ is one-one.
    Statement 2 : $$f(a) = f(b) \Rightarrow a=b$$ for all $$a, b \in R$$ if the function $$f$$ is one-one.
    Which one of the following is correct in respect of the above statements?
    Solution
    Solution:
    Statement $$1$$ is correct, since $$f(x)=x^3$$
    For any $$x,y\in R$$
    $$f(x)=f(y)$$
    $$\Rightarrow x^{3}=y^3$$
    $$\Rightarrow x=y$$
    $$\therefore\ f$$ is one-one $$\forall x\in R.$$
    $$\because f(a)=f(b)\Longrightarrow a^3=b^3\Longrightarrow a=b$$
    Statement $$2$$ is also correct and is the correct explanation of statement $$1.$$
    Hence, A is the correct option.
  • Question 6
    1 / -0
    On the set $$Z$$, of all integers $$\ast$$ is defined by $$a\ast b = a + b - 5$$. If $$2\ast (x\ast 3) = 5$$ then $$x =$$
    Solution
    Given $$a*b=a+b-5$$ where $$*$$ is a unique operator
    So $$2*(x*3)=2*(x+3-5)=2*(x-2)=2+x-2-5=x-5$$
    Its value is given as $$5$$. so $$x-5=5 \implies x=10$$
  • Question 7
    1 / -0
    If $$f(x) = 8x^3, g(x) = x^{1/3}$$, then fog (x) is
    Solution
    $$f\left( x \right) =8{ x }^{ 3 }$$

    $$g\left( x \right) ={ x }^{  { 1 }/{ 3 }  }$$

    $$fog\left( x \right) =f\left[ g\left( x \right)  \right] $$
    $$=f\left[ { x }^{  { 1 }/{ 3 }  } \right] $$

    $$=8{ \left[ { x }^{ { 1 }/{ 3 } } \right]  }^{ 3 }$$

    $$=8x$$
  • Question 8
    1 / -0
    Let $$f (x) = \sqrt {2 - x - x^2}$$ and g(x) = cos x. Which of the following statements are true?
    (I) Domain of $$f((g(x))^2) = $$ Domain of f(g(x))
    (II) Domain of f(g(x)) + g(f(x)) = Domain of g(f(x))
    (III) Domain of f(g(x)) = Domain of g(f(x))
    (IV) Domain of $$g((f(x))^3) = $$ Domain of f(g(x))
    Solution
    Domain of $$f(g(x))$$ is R
    $$\because f(g(x)) = 2- \cos x - \cos x^2 \geq 0$$
    $$\Rightarrow(\cos x + 2)(\cos x - 1) \leq 0$$
    $$\Rightarrow$$ $$-2$$ $$\leq$$ $$\cos x$$ $$\leq$$ $$1$$
    $$\therefore$$ x $$\in$$ R
    Domain of $$g(f(x))$$ is [$$-2$$, $$1$$]
    $$\because$$ In $$\cos \sqrt{2 - x - x^2}$$ 
    $$2 - x - x^2$$ $$\geq$$ $$0$$
    Domain of $$f((g(x))^2)$$ is R
    since $$2$$ - $$\cos^2 x$$ - $$\cos^4 x$$ $$\geq$$ $$0$$
    ($$\cos^2 x$$ + $$2$$)($$\cos^2 x$$ -$$1$$) $$\leq$$ $$0$$
    $$-1$$ $$\leq$$ $$\cos x$$ $$\leq$$ $$1$$
    $$\Rightarrow$$ x$$\in$$ R
    Domain of $$g((f(x))^3)$$ is same as Domain of $$g(f(x))$$
    i.e. [$$-2$$,$$1$$]
    From above discussion statement $$\textrm{I}$$ is true and statements $$\textrm{II, III}$$ and $$\textrm{IV}$$ are false.
  • Question 9
    1 / -0
    If $$f:R\rightarrow R, g:R \rightarrow R$$ be two functions given by $$f(x)=2x-3$$ and $$g(x)=x^3+5$$, then $$(fog)^{-1}(x)$$ is equal to
    Solution
    Given,
    $$f(x)=2x-3$$ and $$g(x)=x^3+5$$
    Now, $$(fog)(x)=f(g(x))=2(x^3+5)-3$$
    $$=2x^3+10-3=2x^3+7$$
    Let, $$(fog)(x)=y,$$ then,
    $$y=2x^3+7$$
    $$\Longrightarrow x=\left(\cfrac{y-7}{2}\right)^{\cfrac 13}$$
    $$\therefore fog^{-1}(x)=\left(\cfrac{x-7}{2}\right)^{\cfrac 13}$$
    Hence, B is the correct option.
  • Question 10
    1 / -0
    If $$f : R \rightarrow R$$ is defined by $$f(x) = x^{3}$$ then $$f^{-1}(8) =$$
    Solution
    The inverse function of the given function is given by interchanging the $$x$$ and $$y$$ and finding the function (the inverse function which is now $$y$$) in terms of $$x$$.
    For $$f(x)=x^3$$
    Let $$f(x)=y\Rightarrow x = f^{-1}(y)$$
    $$y=x^3$$
    $$x=y^{\tfrac { 1 }{ 3 } }$$
    $$\therefore f^{-1}(y)=$$ $$y^{\tfrac { 1 }{ 3 } }$$
    $$f^{-1}(8)=8^{\tfrac { 1 }{ 3 } }=2\times (1)^{\tfrac13}$$
    We know that the cube roots of unity $$(1)$$ are $$1, \omega$$ and $$\omega^2$$
    $$\therefore f^{-1}(8) = \{2,2\omega, 2\omega^2\}$$
    Hence, option $$B$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now