Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 62

Result Self Studies

Relations and Functions Test - 62
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$f,g:R\rightarrow R$$ are functions such that $$f(x)=3x-\sin { \left( \cfrac { \pi x }{ 2 }  \right)  } ,g(x)={ x }^{ 3 }+2x-\sin { \left( \cfrac { \pi x }{ 2 }  \right)  } $$
    The value of $$\cfrac { d }{ dx } { f }^{ -1 }{ \left( { g }^{ -1 }(x) \right)  }_{ x=12 }$$ is equal to
    Solution
    Given that,
    $$g:R \to R$$

    $$f\left( x \right) = 3x - \sin \left( {\dfrac{{\pi x}}{2}} \right)$$

    $$g\left( x \right) = {x^3} + 2x - \sin \left( {\dfrac{{\pi x}}{2}} \right)$$

    $$\therefore \dfrac{{d{f^{ - 1}}}}{{dx}}{\left( {g'\left( x \right)} \right)_{x = 12}} = \dfrac{2}{{30 + x}}$$

    Hence, the option $$(A)$$ is correct.
  • Question 2
    1 / -0
    If $$f: R\rightarrow R$$ and $$g: R\rightarrow R$$ are defined $$f(x) = x - [x]$$ and $$g(x) = [x]\forall x\epsilon R, f(g(x))$$.
    Solution
    We have, $$f(x)=x-[x]=\{x\}\dots (1)$$

     where $$\{x\}$$ is the fractional part of $$x$$

    If $$g(x)=[x]$$, where $$[x]$$ is the greatest integer part of $$x$$, then 

    The value of $$g(x)$$ will always be an integer.

    And $$\therefore f(g(x))=f([x])=0$$

    $$\because $$ the fractional part of $$g(x)$$ i.e $$[x]$$ is always $$0$$.
  • Question 3
    1 / -0
    If $$f: (-\infty, 3]\rightarrow [7, \infty); f(x) = x^{2} - 6x + 16$$, then which of the following is true?
    Solution
    Let $$f(x) = y $$

    $$=x^2 - 6x + 16$$ 

    $$= (x-3)^2+7$$

    So $$(x-3)^2 = y -7$$

    $$\Rightarrow x = 3+ \sqrt{y-7}$$

    now $$f(x) = y $$

    $$\Rightarrow x = f^{-1}(y)$$

    So $$f^{-1}(y) = 3 + \sqrt{y-7}$$

    Since x,y are arbitrary variables replace y with x to get Option A as the answer.
  • Question 4
    1 / -0
    Let $$f(x)={ x }^{ 3 }-3x+1$$. The number of different real solutions of $$f(f(x))=0$$
  • Question 5
    1 / -0
    The inverse of the function $$y = 5^{\ln\ x}$$ is
    Solution
    Given that
    $$ y = 5^{\ln x} $$

    $$ \ln y = \ln (5^{\ln x}) $$
           $$ = (\ln x) (\ln 5)$$

    $$ \therefore  \ln x = \dfrac{\ln y}{\ln 5} $$

    $$ x = e^{\frac{\ln y}{\ln 5} }$$
        $$ =  (e^{\ln y})^{\frac{1}{\ln 5}}$$
        $$ =  y^{\frac{1}{\ln 5}}$$

    Since the domain of the natural log function ln() is the set of positive real numbers, it is required here that 
    $$ y > 0$$.

    The inverse function:
    $$ x =  y^{\frac{1}{\ln 5}}, \; \; y > 0$$
  • Question 6
    1 / -0
    If $$f(x)$$ is a real valued function, then which of the following is one-one function?
    Solution
    $$(1)$$  $$f(x)=e^{|x|}$$
    Since$$f(x)=f(-x)$$
    So $$f(x)$$ is many one.

    $$(2)$$  $$f(x)=|e^{x}|$$
    so, $$f(x)=e^x$$
    and as $$e^x$$ is one-one
    So $$f(x)$$ is one-one.


    $$(3)$$  $$f(x)=\sin x$$
    Since $$\sin x$$ is many one
    So $$f(x)$$ is also many-one.

    $$(4)$$  $$f(x)=|\sin x|$$
    Since $$\sin x$$ is many one
    So $$f(x)$$ is also many-one.

  • Question 7
    1 / -0
    If $$A =\{1, 2, 3\}$$ and $$ B = \{4, 5\}$$ then the number of function $$f : A \rightarrow B$$ which is not onto is ______
    Solution
    Total number of function $$f:A\rightarrow B$$ is the number of relations from $$A$$ to $$B$$ such that all the elements of $$A$$ are in the first elements of function $$f$$.
    Hence, total number of functions are $$=2\times 2\times 2 =2^3=8$$
    There are two functions for which the function is $$\{(1,4),(2,4),(3,4)\}$$ and $$\{(1,5),(2,5),(3,5)\}$$.
    Hence there are two non-onto functions.


  • Question 8
    1 / -0
    If $$f\,: R \rightarrow R, g: R \rightarrow R\,$$ are defined by $$f(x)= 5x -3,g(x)=x^2 + 3$$, then, $$(gof^{-1})(3) =$$
    Solution
    $$f(x)=5x-3,$$ $$g(x)=x^2+3$$
    Let $$f(x)=y$$
    $$\Rightarrow$$  $$5x-3=y$$
    $$\Rightarrow$$  $$x=\dfrac{y+3}{5}$$       ----( 1 )
    Now,
     $$f(x)=y$$
    $$f^{-1}(y)=x$$
    $$f^{-1}(y)=\dfrac{y+3}{5}$$                   [ From ( 1 ) ]
    $$f^{-1}(x)=\dfrac{x+3}{5}$$
    Next, 
    $$(gof^{-1})(3)$$
    $$\Rightarrow$$  $$g[f^{-1}(3)]$$
    $$\Rightarrow$$  $$g\left[\dfrac{3+3}{5}\right]$$

    $$\Rightarrow$$  $$g\left[\dfrac{6}{5}\right]$$

    $$\Rightarrow$$  $$\left(\dfrac{6}{5}\right)^2+3$$           [ Since, $$g(x)=x^2+3$$ ]

    $$\Rightarrow$$  $$\dfrac{36}{25}+3$$

    $$\Rightarrow$$  $$\dfrac{36+75}{25}$$

    $$\Rightarrow$$  $$\dfrac{111}{25}$$

  • Question 9
    1 / -0
    Let $$f:A \to b$$ be a function defined by f(x) =$$\sqrt {1 - {x^2}} $$
    Solution
    $$f:A\rightarrow B$$
    $$ f(x)=\sqrt { 1-{ x }^{ 2 } } $$
    When $$ x=0$$
    $$ f(0)=\sqrt { 1-0 } $$
    $$ =1$$
    $$ f(1)=\sqrt { 1-{ 1 }^{ 2 } } $$
    $$ =0$$
    $$ f(x)$$ is one - one function  when $$A=[0,1]$$
  • Question 10
    1 / -0
    If $$f:R\rightarrow R,f(x)=\begin{cases} 1\quad \quad x>0 \\ 0\quad \quad x=0 \\-1\quad x<0 \end{cases}$$ and $$g:R\rightarrow R,g(x)=\left[ x \right] $$, then $$\left( f\circ g \right) \left( \pi  \right)$$ is:
    Solution
    Given that $$g(x)=[x]$$

    $$\Rightarrow$$ $$g(\pi )=g(3.141....)$$

    i.e $$g(\pi )=3$$

    $$(f\circ g)(x)=f(g(x))$$

    $$\Rightarrow$$ $$(f\circ g)(\pi ))=f(g(\pi ))$$

    But $$g(\pi)=3$$

    $$\Rightarrow f(3)=1$$ ...... $$[\because f(x)=1 \text{ for } x>0]$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now