Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 65

Result Self Studies

Relations and Functions Test - 65
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f\left( x \right) =\begin{cases} 2+x,\quad x\ge 0 \\ 2-x,\quad x<0 \end{cases}$$ then $$f\left( f\left( x \right)  \right) $$ is given by
    Solution

  • Question 2
    1 / -0
    Let $$f:X \to \left[ {1,\,27} \right]$$ be  a function by $$f\left( x \right) = 5\sin x + 12\cos x + 14$$. The set $$X$$ so that $$f$$ is one-one and onto is 
    Solution

  • Question 3
    1 / -0
    If : $$f(x) = 5 {x}^{2}$$, $$g(x) = 3x^{4}$$, then : $$(fog) (-1) =$$ 
    Solution

  • Question 4
    1 / -0
    For $$a,\ b\ \in \ R-\left\{ 0 \right\}$$, let $$f(x)=ax^{2}+bx+a$$ satisfies $$f\left(x+\dfrac{7}{4}\right)=f\left(\dfrac{7}{4}-x\right) \forall \ x\ \in\ R$$.
    Also the equation $$f(x)=7x+a$$ has only one real distinct solution. The minimum value of $$f(x)$$ in $$\left[0,\dfrac{3}{2}\right]$$ is equal to
    Solution

  • Question 5
    1 / -0
    If $$f\left( x \right) = (1 - x)$$ , $$x \in \left[ { - 3,3} \right]$$ , then the domain of $$f\left( {f\left( x \right)} \right)$$ is
    Solution
    $$f\left(x\right)=1-x$$
    $$f\left(f\left(x\right)\right)=f\left(1-x\right)=1-1+x=x$$
    And $$x\in\left[-3,3\right]$$
    Domain of $$f\left(x\right)$$ is $$\left[-3,3\right]$$
    Domain of $$f\left(f\left(x\right)\right)=$$Domain of $$f\left(1-x\right)$$
    Domain of $$f\left(f\left(x\right)\right)=\left[1-3,3\right]=\left[-2,3\right]$$
  • Question 6
    1 / -0
    If f(g(x))=5x+2 and g(x)=8x then f(x)=
    Solution

  • Question 7
    1 / -0
    Let $$g\left( x \right) =1+x-\left[ x \right] $$ and $$f\left( x \right) =\begin{cases} -1,x<0 \\ 0,x=0 \\ 1,x>0 \end{cases}$$ Then for all $$x,f\left( g\left( x \right) \right) $$ is equal to (where $$\left[ . \right] $$ represents the greatest integer function)
    Solution

  • Question 8
    1 / -0
    If $$f:R \rightarrow R, f(x)=2x-1$$ and $$g; R \rightarrow R, g(x)=x^{2}+2$$, then $$(gof)(x)$$ equals-
    Solution
    $$f(x)=2x-1$$
    $$g(x)=x^2+2$$
    $$g(f(x))=(2x-1)^2+2=4x^2-4x+3$$.

  • Question 9
    1 / -0
    Let $$g(x)=1+x-[x]\quad $$ and $$f(x)=\begin{cases} -1\quad if\quad x<0 \\ 0\quad \quad if\quad x=0 \\ 1\quad \quad if\quad x>0 \end{cases}$$ , then $$\forall \:x,fog(x)$$ equals 
    Solution
    given g(x)=1+x=[x] 1+{x} {x} donates the fractional part of x  so,
    g(x) is always positive
      so, input to f(g(x)) is always positive and 
    hence, fog(x)=1
  • Question 10
    1 / -0
    The last three digits, if $$(12345956)_{10}$$ is expressed in binary system.
    Solution
    undefined

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now