Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 66

Result Self Studies

Relations and Functions Test - 66
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x)=\frac{x}{\sqrt{1-x^{2}}}$$ and g(x) = $$f(x)=\frac{x}{\sqrt{1+x^{2}}}$$ , then (fog)(x) =
    Solution
    Given:-
    $$f{\left( x \right)} = \cfrac{x}{\sqrt{1 - {x}^{2}}}$$
    $$g{\left( x \right)} = \cfrac{x}{\sqrt{1 + {x}^{2}}}$$
    To find:-
    $$fog{\left( x \right)} = ?$$
    $$fog{\left( x \right)}$$
    $$= f{\left( g{\left( x \right)} \right)}$$
    $$= f{\left( \cfrac{x}{\sqrt{1 + {x}^{2}}} \right)}$$
    $$= \cfrac{\left( \cfrac{x}{\sqrt{1 + {x}^{2}}} \right)}{\sqrt{1 - {\left( \cfrac{x}{\sqrt{1 + {x}^{2}}} \right)}^{2}}}$$
    $$= \cfrac{\left( \cfrac{x}{\sqrt{1 + {x}^{2}}} \right)}{\sqrt{1 - \left( \cfrac{{x}^{2}}{1 + {x}^{2}} \right)}}$$
    $$= \cfrac{\left( \cfrac{x}{\sqrt{1 + {x}^{2}}} \right)}{\sqrt{\left( \cfrac{1 + {x}^{2} - {x}^{2}}{1 + {x}^{2}} \right)}}$$
    $$= \cfrac{\left( \cfrac{x}{\sqrt{1 + {x}^{2}}} \right)}{\left( \cfrac{1}{1 + {x}^{2}} \right)}$$
    $$= \cfrac{x}{\sqrt{1 + {x}^{2}}}$$
    $$\Rightarrow fog{\left( x \right)} = \cfrac{x}{\sqrt{1 + {x}^{2}}}$$
    Hence the correct answer is $$\cfrac{x}{\sqrt{1 + {x}^{2}}}$$.
  • Question 2
    1 / -0
    If $$ f ( x ) = \left( a - x ^ { n } \right) ^ { 1 / n }$$ where $$ a > 0$$ and } $$n$$ is a positive integer then$$( f o f ) ( x )$$ is
    Solution
    $$f(x)=(a-x^n)^{1/n}$$
    $$\therefore f(f(x))=(a-(f(x))^n))^{1/n}$$
    $$\therefore f(f(x))=(a-((a-x^n)^{1/n)^n)^{1/n}}$$
    $$\therefore f(f(x))=(a-((a-x^n)))^{1/n}$$
    $$\therefore f(f(x))=(a-a+x^n)^{1/n}$$
    $$\therefore f(f(x))=(x^n)^{1/n}$$
    $$\therefore(f(x))=x$$
  • Question 3
    1 / -0
    if $$f\left( x \right) = \log \left( {\dfrac{{1 +x}}{{1 - x}}} \right)$$ and $$g\left( x \right) = \dfrac{{3x + {x^3}}}{{1 + 3{x^2}}}$$ then $$\left( {f(g(x)))} \right)$$ is equal to
    Solution
    $$f(x)=\log\bigg(\dfrac{1+x}{1-x}\bigg)\ and\ g(x)=\dfrac{3x+x^{3}}{1+3x^{2}}$$

    $$f(g(x))=\log\bigg(\dfrac{1+\dfrac{3x+x^{3}}{1+3x^{2}}}{1-\dfrac{3x+x^{3}}{1+3x^{2}}}\bigg)$$

    $$f(g(x))=\log\bigg(\dfrac{\dfrac{1+3x^{2}+3x+x^{3}}{1+3x^{2}}}{\dfrac{1+3x^{2}-3x-x^{3}}{1+3x^{2}}}\bigg)$$

    $$f(g(x))=\log\bigg(\dfrac{1+3x^{2}+3x+x^{3}}{1+3x^{2}-3x-x^{3}}\bigg)$$

    $$f(g(x))=\log\bigg(\dfrac{(1+x)^3}{(1-x)^{3}}\bigg)$$

    $$f(g(x))=\log\bigg(\dfrac{1+x}{1-x}\bigg)^{3}$$

    $$f(g(x))=3\log\bigg(\dfrac{1+x}{1-x}\bigg)$$

    $$f(g(x))=3f(x)$$

  • Question 4
    1 / -0
    Let $$f:R\rightarrow R$$ is a function satisfying $$f(2-x)=f(2+x)$$ and $$f(20-x)=f(x)\forall x\in R$$
    If $$f(0)=5$$ then the minimum possible no. of values of $$x$$ satisfying $$f(x)=5$$ for $$x=[0.,70]$$, is
    Solution
    Given,   $$f(2 - x) = f(2 + x) .. (i)$$
    $$\therefore f(x)$$ is symmetric about $$x = 2$$
    $$f(20 - x) = f(x) ..(ii)$$
    $$x \rightarrow x + 10$$
    $$f(10 - x) = f(10 + x)$$
    $$f(x)$$ is symmetric about $$x = 10$$
    $$x \rightarrow x + 2$$
    $$f(18 - x) = f(x + 2) .. (ii)$$
    $$f(2 - x) = f(18 - x)$$
    $$x \rightarrow -x$$
    $$f(2 + x) = f(18 + x)$$
    $$\therefore x + 2 \rightarrow x$$
    $$\therefore f(x) = f(x + 16)$$
    $$f(x)$$ has period = $$16$$
    $$f(x) = 5 , \, x \in [0, 170]$$
    put $$x = 2$$ in (i) $$f(0) = f(4)$$
    put $$x = 4$$ in (ii) $$f(4) = f(16)$$
    when $$x \in [0, 16] \rightarrow f(x) $$ has two solution 
    when $$x \in [0, 160]$$ has $$20$$ solution.
    When $$x in [0, 170]$$ has $$'21'$$ solution

  • Question 5
    1 / -0
    Let $$f\left( x \right) = {x^2}$$ and $$g\left( x \right) = {2^x}$$. Then the solution of the equation $$fog\left( x \right) = gof\left( x \right)$$ is
    Solution
    $$f\left(x\right)={x}^{2}$$

    $$f{g\left(x\right)}=f{\left({2}^{x}\right)}={\left({2}^{x}\right)}^{2}={2}^{2x}$$

    $$g\left(x\right)={2}^{x}$$

    $$g{f\left(x\right)}=g{\left({x}^{2}\right)}={2}^{{x}^{2}}$$

    Given:$$f{g\left(x\right)}=g{f\left(x\right)}$$

    $$\Rightarrow\,{2}^{2x}={2}^{{x}^{2}}$$

    Since bases are same we can equate the powers
    $$\Rightarrow\,2x={x}^{2}$$
    $$\Rightarrow\,{x}^{2}-2x=0$$
    $$\Rightarrow\,x\left(x-2\right)=0$$
    $$\Rightarrow\,x=0,2$$

    When $$x=0,\,f{g\left(x\right)}=g{f\left(x\right)}\Rightarrow\,{2}^{0}={2}^{0}=1$$
    When $$x=2,\,f{g\left(x\right)}=g{f\left(x\right)}\Rightarrow\,{2}^{2\times 2}={2}^{{2}^{2}}\Rightarrow\,16=16$$
    Hence $$x=\left\{0,2\right\}$$
  • Question 6
    1 / -0
    All values of a for which f : R $$ \to R$$ defined by f(x)= $${x^3} + a{x^2} + 3x + 100$$ is a one one functions, are
    Solution
    $$f ^ { \prime } ( x ) = 3 x ^ { 2 } + 2 a x + 3$$
    $$f ^ { \prime } ( x ) = 0$$  and f ( x ) > 0  $$f ^ { \prime } ( x ) < 0$$
    $$ 3 x ^ { 2 } + 2 a x + 3  = 0$$
    $$ x =  \dfrac { - 2 a \pm \sqrt { 4 a ^ { 2 } - 36 } } { 6 }$$
    $$ 4 a ^ { 2 } < 36$$
    $$ a \in ( - 3,3 ) $$
  • Question 7
    1 / -0
    If $$f ( x ) = \left( a - x ^ { n } \right) ^ { 1 / n }$$ where $$a > 0$$ and $$n$$ is a positive integer then $$( f o f ) ( x )$$ is 
    Solution
    $$f(n)= (a-x^{n})^{1/n}$$
    $$(fof)^{(n)}=(a-((a-x^{n})^{1/n})^{n})^{1/n}$$
    $$=(a-a+x^{n})^{1/n}$$
    $$fof(n)=x$$

  • Question 8
    1 / -0
    Let $$A = \{ 1,2,3 \}$$ . Which of the following functions on A is invertible?
    Solution
    $$A=\left\{ 1,2,3 \right\} $$
    $$\therefore$$   $$A$$ is invertible when obviously
    $$f=\left\{ \left( 1,1 \right) ,\left( 2,1 \right) ,\left( 3,1 \right)  \right\} $$
  • Question 9
    1 / -0
    If $$f ( x ) = \sin ^ { - 1 } ( \sin x ) + \cos ^ { - 1 } ( \sin x ) \text { and } \phi ( x ) = f ( f ( f ( x ) ) )$$ then $$\phi ^ { \prime } ( x )$$
    Solution
    $$f(x)=\sin ^{ -1 }{ \left( \sin { x }  \right)  } +\cos ^{ -1 }{ \left( \sin { x }  \right)  } =\cfrac { \pi  }{ 2 } \left[ \because \sin ^{ -1 }{ \theta  } +\cos ^{ -1 }{ \theta  } =\cfrac { \pi  }{ 2 }  \right] $$
    $$f(f(x))=f\left(\cfrac { \pi  }{ 2 }\right )=\cfrac { \pi  }{ 2 } $$
    $$\phi (x)=f(f(f(x)))=f\left(\cfrac { \pi  }{ 2 }\right )=\cfrac { \pi  }{ 2 } $$
    $$\phi (x)=\cfrac { \pi  }{ 2 } $$
    $$\phi '(x)=0$$
  • Question 10
    1 / -0
    $$f:R \rightarrow R$$ such that $$f(x)=\ell n(x+\sqrt {x^{2}+1})$$. Another function $$g(x)$$ is defined such that $$gof(x)=x\ \forall\ x \in\ R$$. Then $$g(2)$$ is -
    Solution
    $$f(x)= ln (x+ \sqrt{x^{2}+1})$$

    $$g(x)= g(f(x))$$                        $$ g(2)=?$$

    ln $$(x+ \sqrt{x^{2}+1})=y$$

    $$\sqrt{x^2+1}= e^y-{x}$$

    $$x^{2}+1= e^{2y}-2e^{y}x+x^{2}$$

    $$e^{2y}-2e^{y}x-1=o \Rightarrow$$

    $$x =\dfrac{e^{2y}-1}{2e^{y}}$$

    $$=\dfrac{(e^{y}- e^{-y})}{2}$$

    $$\therefore g(x) = \dfrac{e{^y}- e^{-y}}{2} \Rightarrow g (2)= \dfrac{e^{2}-e^{-2}}{2}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now