Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 67

Result Self Studies

Relations and Functions Test - 67
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    if $$f\left( x \right) = 3x + 2$$ , $$g\left( x \right) = {x^2} + 1$$,then the values of $$\left( {f_og} \right)\left( {{x^2} - 1} \right)$$
    Solution
    $$f\left(x\right)=3x+2$$

    $$g\left(x\right)={x}^{2}+1$$
    $$f.g\left(x\right)=f\left({x}^{2}+1\right)$$
    $$f.g\left(x\right)=3\left({x}^{2}+1\right)+2=3{x}^{2}+5$$

    $$f.g\left(x\right)=3{x}^{2}+5$$
    $$f.g\left({x}^{2}-1\right)=3{\left({x}^{2}-1\right)}^{2}+5$$

    $$=3\left({x}^{4}-2{x}^{2}+1\right)+5$$

    $$=3{x}^{4}-6{x}^{2}+3+5$$

    $$=3{x}^{4}-6{x}^{2}+8$$
  • Question 2
    1 / -0
    Let A = {1,2,3,4,5} and B={1,2,3,4,5}. If $$f:A\rightarrow B$$ is an one-one function and $$f(x)=x$$ holds only for one value of  $$x\epsilon \{ 1,2,3,4,5\} ,$$ then the number of such possible function is  
    Solution

  • Question 3
    1 / -0
    The function $$f :\left[-\dfrac{1}{2}, \dfrac{1}{2}\right]\rightarrow \left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right]$$ defined by $$f(x)=\sin^{-1}(3x-4x^{3})$$ is 
    Solution
    $$f:[-\cfrac{1}{2},\cfrac{1}{2}]\rightarrow[-\cfrac{\pi}{2},\cfrac{\pi}{2}]\\f(x)=\sin^{-1}(3x-4x^3)$$
    Range of $$\sin^{-1}(3x-4x^3)$$ is $$[-\cfrac{\pi}{2},\cfrac{\pi}{2}]$$
    And $$-\cfrac{\pi}{2}\le\sin^{-1}(3x-4x^3)\le\cfrac{\pi}{2}$$
    $$\Rightarrow \sin(\cfrac{-\pi}{2})\le3x-4x^3\le\sin\cfrac{\pi}{2}$$
    $$\Rightarrow-1\le3x-4x^3\le1$$
    $$3x-4x^3\le-1$$
    $$\Rightarrow 4x^3-3x-1\le0$$
    $$\Rightarrow x\le\cfrac{1}{2}$$
    and$$3x-4x^3\le1\Rightarrow 4x^3-3x+1\le0\\ \Rightarrow x\le-\cfrac{1}{2}\\ \therefore x\epsilon [-\cfrac{1}{2},\cfrac{1}{2}]\\f{x}=\sin^{-1}(3x-4x^3)\\ \Rightarrow f^1(x)=\cfrac{1}{\sqrt{1-(3x-4x^3)^2}}\times(3-12x^2)\\ \Rightarrow f^1(x)=3-12x^2\\ \quad=-(12x^2-3)\\x^2\le0\Rightarrow 12x^2\le0\Rightarrow 12x^2-3\le-3\\-3(12x^2-3)\le3\\ \therefore f^1(x)\le0$$
    $$\therefore f^1(x)$$ is a decreasing function.
    Hence $$f(x)$$ is one-one and range of function $$=$$ its co-domain.
    Hence it is both one-one and onto.
  • Question 4
    1 / -0
    If $$f\left( x \right) = \frac{{x - 1}}{{x + 1}}$$, then $$f^{-1}\left( x \right)$$ is
    Solution

  • Question 5
    1 / -0
    Let g be the inverse function of differentiable function f and $$G\left( x \right) =\frac { 1 }{ g\left( x \right)  } if\quad f\left( 4=2 \right) $$ and $$f'\left( 4 \right) =\frac { 1 }{ 16 } $$, then the value of $${ \left( G'\left( 2 \right)  \right)  }^{ 2 }$$ equals to:
    Solution

  • Question 6
    1 / -0
    If $$f:( - 1,1) \to B$$ , is a function defined by $$f(x) = {\tan ^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}$$, then find $$B$$ when $$f(x)$$ is both one-one and onto function. 
    Solution
    For $$x \epsilon (-1,1)$$, we have
    $$f(x)=\tan^{-1}\left[\dfrac {2x}{1-x^2}\right]$$
    Substituting $$x=\tan\theta$$ in above equation.
    Therefore, $$f(\tan \theta)=\tan^{-1}\left[\dfrac {2\tan \theta}{1-\tan^2\theta}\right]$$
    $$=\tan^{-1}\tan (2\theta)=2\theta$$
    $$=2\tan ^{-1}x$$
    Thus $$-\dfrac {\pi}{2}<\tan ^{-1}\left[\dfrac {2x}{1-x^2}\right]<\dfrac {\pi}{2}$$
    Thus option B is correct.
  • Question 7
    1 / -0
    Difference between the greatest and the least values of the function
    $$f(x) = x(ln x - 2)$$ on $$[1, e^{2}]$$ is
    Solution

  • Question 8
    1 / -0
    If $$f(x)=x^{3}+x^{2}f'(1)+xf''(2)+f'''(3)\ \forall x\ \epsilon \ R$$, then $$f(x)$$ is
  • Question 9
    1 / -0
    Let S be a non-empty set and P(S) be the power set of set S. Find the identity element for the union $$(\cup)$$ as a binary operation on $$P(S)$$.
    Solution
    We observe that
    $$A \cup \phi = A = \phi \cup A$$ for every subset A of set S.
    $$A \cup \phi = A =\phi \cup A$$ for all $$A \in P(S)$$
    $$\phi$$ is the identity element for union $$(\cup)$$ on $$P(S)$$.
  • Question 10
    1 / -0
    If $$\begin{bmatrix} \sin { \left( \dfrac { \pi  }{ 2 }  \right)  }  & \cos { \left( \dfrac { \pi  }{ 3 }  \right)  }  \\ 2\tan { \left( \dfrac { \pi  }{ 4 }  \right)  }  & 2k \end{bmatrix}$$ is not invertible, then $$k=$$
    Solution
    We have,
    $$\begin{bmatrix} \sin { \left( \dfrac { \pi  }{ 2 }  \right)  }  & \cos { \left( \dfrac { \pi  }{ 3 }  \right)  }  \\ 2\tan { \left( \dfrac { \pi  }{ 4 }  \right)  }  & 2k \end{bmatrix}$$

    Since, $$|A| = 0$$ if it is not invertible,
    $$1(2k) - ((\cos 60) ( 2 \tan 45 )) = 0$$
    $$2k - 1 = 0$$
    $$k = \dfrac{1}{2}$$

    Hence, this is the answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now