Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 76

Result Self Studies

Relations and Functions Test - 76
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find $$g(x)$$, if $$f(x) = 5x^{2} + 4$$ and $$f(g(3)) = 84$$
    Solution
    Given, $$f(x)=5x^2+4$$, $$f(g(3))=84$$ 
    $$\Rightarrow f(g(3)) = 5{g(3)}^{2} +4 = 84$$
    $$\Rightarrow 5{g(3)}^{2}=80$$
    $$\Rightarrow g(3) = \sqrt{16} = 4$$
    $$\Rightarrow g(x) = {x}^{2}-5$$ satisfies the relation $$g(3) = 4$$
    Therefore, the correct option is $$D$$.
  • Question 2
    1 / -0
    If the binary operation $$a$$ # $$b = a^{b} - \sqrt {b}$$, then $$(2$$ # $$4) - (4$$ # $$2) =$$
    Solution

  • Question 3
    1 / -0

    Directions For Questions

    Let $$f: A\rightarrow B, g: B\rightarrow C$$ and $$h:C\rightarrow D$$ be three functions, then the function $$gof:A \rightarrow C$$ defined by gof(x) g[f(x)] for all $$x \epsilon A$$ is called the composition of f and g.

    ...view full instructions

    If $$h(x) = x^2, g(x)= x^2 -3$$ and f(x)= x -2, what can you say about ho(gof) and (hog)of?
    Solution

  • Question 4
    1 / -0
    Which of the following functions are not identical?
  • Question 5
    1 / -0
    The function $$f(x)={x}^{2}+bx+c$$, where $$b$$ and $$c$$ real constants, describes
    Solution
    $$f\left( x \right) =x^{2}+bx+c$$ when $$f\left( x_{1} \right) =f\left( x_2 \right)$$ 
    Since this a quadratic function and quadratic function is neither one-one  nor onto.
    so option D is correct.
  • Question 6
    1 / -0

    Directions For Questions

    Let $$f: A\rightarrow B, g: B\rightarrow C$$ and $$h:C\rightarrow D$$ be three functions, then the function $$gof:A \rightarrow C$$ defined by gof(x) g[f(x)] for all $$x \epsilon A$$ is called the composition of f and g.

    ...view full instructions

    If f(x)=x+2and $$g(x)=x^2-3$$, then which is true?
    Solution

  • Question 7
    1 / -0
    Given $$g(x)=9\log_8(x-3)-5, g^{-1}(13)=$$
    Solution
    Let $$y=9\log _{ 8 }{ (x-3) } -5$$
    Solve for $$x$$ as shown below:
    $$y=9\log _{ 8 }{ (x-3) } -5\\ y+5=9\log _{ 8 }{ (x-3) } \\ \log _{ 8 }{ (x-3) } =\frac { y+5 }{ 9 } \\ x-3={ 8 }^{ \left( \frac { y+5 }{ 9 }  \right)  }\\ x={ 8 }^{ \left( \frac { y+5 }{ 9 }  \right)  }+3$$
    Therefore, $$g^{ -1 }(x)={ 8 }^{ \left( \frac { y+5 }{ 9 }  \right)  }+3$$
    Now, substitute $$x=13$$ in $$g^{ -1 }(x)={ 8 }^{ \left( \frac { y+5 }{ 9 }  \right)  }+3$$ that is:
    $$g^{ -1 }(13)={ 8 }^{ \left( \frac { 13+5 }{ 9 }  \right)  }+3$$
    $$g^{ -1 }(13)={ 8 }^{ \left( \frac { 18 }{ 9 }  \right)  }+3$$
    $$g^{ -1 }(13)={ 8 }^2+3$$
    $$g^{ -1 }(13)=64+3$$
    $$g^{ -1 }(13)=67$$
  • Question 8
    1 / -0
    If $$f(x) = 4x^{2} - 1$$ and $$g(x) = 8x + 7, g\circ f(2) =$$
    Solution

  • Question 9
    1 / -0
    Let $$f:\{x, y , z\} \rightarrow \{1, 2, 3\}$$ be a one-one mapping such that only one of the following three statements and remaining two are false : $$f(x) \neq 2, f(y) =2, f(z) \neq 1$$, then 
    Solution
    $$f:\left\{ x,y,z \right\} \rightarrow \left\{ 1,2,3 \right\} $$
    $$I-f\left( x \right) \neq 2$$
    $$II-f\left( y \right) =2$$
    $$III-f\left( z \right) \neq 1$$
    1. Let statement I is true, $$\therefore $$ other two are false
    $$\therefore f\left( x \right) \neq 2,f\left( y \right) \neq 2$$
    $$\therefore f\left( z \right) =1$$
    $$f\left( x \right) \& f\left( y \right) $$ can be $$2$$ or $$3$$
    We don't know exact value of $$f\left( x \right) \& f\left( y \right) $$
    2. Let statement II is true
    $$f\left( y \right) =2\quad \therefore f\left( z \right) =1\quad $$ [$$\because f\left( z \right) \neq 1$$ is false]
    $$f\left( x \right) =3$$
    $$f\left( x \right) >f\left( y \right) >f\left( z \right) $$
  • Question 10
    1 / -0
    $$f(x)=x^2-x+5$$ and $$g(x) = f^{-1}(x)$$. Then $$g'(7)=$$
    Solution
    $$f\left( x \right) ={ x }^{ 2 }-x+5=y$$
    $$g\left( x \right) =f^{ -1 }\left( x \right) $$
    $$y={ x }^{ 2 }-x+5$$
    $$y={ x }^{ 2 }-x+\cfrac { 1 }{ 4 } -\cfrac { 1 }{ 4 } +5$$
    $$y={ \left( x-\cfrac { 1 }{ 2 }  \right)  }^{ 2 }+\cfrac { 19 }{ 4 } $$
    $$\sqrt { y-\cfrac { 19 }{ 4 }  } +\cfrac { 1 }{ 2 } =x$$
    $$\therefore g\left( x \right) =\sqrt { y-\cfrac { 19 }{ 4 }  } +\cfrac { 1 }{ 2 } $$
    $$g'\left( x \right) =\cfrac { 1 }{ 2\sqrt { y-\cfrac { 19 }{ 4 }  }  } $$
    when, $$x=7,y=47$$
    $$g'\left( 7 \right) =\cfrac { 1 }{ 2\sqrt { 47-\cfrac { 19 }{ 4 }  }  } $$
    $$=\cfrac { 1 }{ \sqrt { 188-19 }  } $$
    $$=\cfrac { 1 }{ \sqrt { 169 }  } $$
    $$g'\left( 7 \right) =\cfrac { 1 }{ 13 } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now