Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 81

Result Self Studies

Relations and Functions Test - 81
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If  27  $$^{*}$$  3 =243 and  5  $$^{*}$$   4 = 80 .Then what is the value of  3   $$^{*}$$   7 = ?
    Solution

  • Question 2
    1 / -0
    Consider the function $$f\left( x \right) ={ e }^{ x }$$ and $$g\left( x \right)=\sin ^{ -1 }{ x } $$, then which of the following is/are necessarily true.
    Solution

    $$\text { solution: } \quad f(x)=e^{x} \quad g(x)=\sin ^{-1}(x) \\$$

    $$\text { gof }=\sin ^{-1}\left(e^{x}\right) \\$$

    $$\therefore-1 \leqslant e^{x} \leqslant 1 \\$$

    $$\text { so we need } x \in(-\infty \text { o] } \\$$

    $$\text { domain of gof is }(-\infty, 0] \\$$

    $$\text { Range of gof is same as range of } g \\$$

    $$\text { Ansuer. : option (B) }$$

  • Question 3
    1 / -0
    Let N be the set of natural numbers and two functions f and g be defined as
    and g(n)=$$n-{ \left( -1 \right)  }^{ n }$$ then fog is:
    Solution

  • Question 4
    1 / -0
    Let $$f:R\rightarrow R$$  defined by $$f\left( x \right) =\frac { { e }^{ { x }^{ 2 } }-{ e }^{ -x^{ 2 } } }{ { e }^{ x^{ 2 } }+{ e }^{ { -x }^{ 2 } } } ,$$ then
    Solution

    $$\text { solution: } \quad f(x)=\frac{e^{x^{2}}-e^{-x^{2}}}{e^{x^{2}}+e^{-x^{2}}}=\frac{\left(e^{x^{2}}\right)^{2}-1}{\left(e^{x^{2}}\right)^{2}+1} \\$$

    $$f^{\prime}(x)=\frac{\left\{\left(e^{x^{2}}\right)^{2}+1\right\}\left\{4 x\left(e^{x^{2}}\right)\right\}-\left\{\left(e^{x^{2}}\right)^{2}-1\right\}\left\{4 x\left(e^{x^{2}}\right)\right\}}{\left(\left(e^{x^{2}}\right)^{2}+1\right)^{2}} \\$$

    $$\text { Since } f^{\prime}(x) \text { is nither positive, nor negative } \\$$

    $$\text { for all } x \text { so } f(x) \text { is not one - one function } \\$$

    $$\qquad f(x)=\frac{\left(e^{x^{2}}\right)^{2}-1}{\left(e^{x^{2}}\right)^{2}+1}$$

    Range of $$f(x)$$ is $$[0,1 )$$

    since Range of $$f(x)$$ is not equal to co-domain

    of $$f(x)$$ so $$f(x)$$ is not onto function.

    Answer: option: (B)
  • Question 5
    1 / -0
    Which one of the following is one-one?
  • Question 6
    1 / -0
    The function $$f:R\rightarrow R$$ defined by $$f\left( x \right) =\frac { { e }^{ \left| x \right|  }-{ e }^{ -x } }{ { e }^{ x }+{ e }^{ -x } } $$ is
    Solution

  • Question 7
    1 / -0
    Let f(x+y)=f f(x) f(y) and  f(x) =1+x g(x) G(x), where $$\underset { x\rightarrow 0 }{ lim } g\left( x \right) =a and \underset { x\rightarrow 0 }{ lim } G\left( x \right) =b,$$ then f' (x) is equal to
    Solution

  • Question 8
    1 / -0
    Let $$f:R\rightarrow R$$, be defined as $$f(x)={ e }^{ x^{ 2 } }+cosx$$ then f is
    Solution

  • Question 9
    1 / -0
    $$f:N\rightarrow N\quad where\quad f\left( x \right) =x-{ (-1) }^{ x }$$, then 'f' is
    Solution

  • Question 10
    1 / -0
    Let (X) be a function satisfying f' (X) = f (X) with f (0) = 1 and g (X) be a function that satisfies f (X) + g (x) = $${ x }^{ 2 },$$ Then the value of the integral $$\int _{ 0 }^{ 1 }{ f } (x)\quad g\quad (x)\quad dx,\quad is$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now