Self Studies

Vector Algebra ...

TIME LEFT -
  • Question 1
    1 / -0

    Let $$a,b,c,d $$ be the position vectors of the points $$\mathrm{A},\mathrm{B},\mathrm{C},\mathrm{D}$$ respectively. The condition for the figure $$ABCD$$ to be a parallelogram is

  • Question 2
    1 / -0

    Let $$2\hat{i}+\hat{k}=\vec{\mathrm{a}},\ 3\hat{j}+4\hat{k}=\vec{{b}}$$, $$8\hat{i}-3\hat{j}$$ $$=\vec{\mathrm{c}}$$. If $$\vec{a}={x}\vec{b}+{y}\vec{{c}}$$, then $$(x,y) $$ is equal to

  • Question 3
    1 / -0

    If $$A(\overline{a})$$ , $$B(\overline{b})$$ and $$C(\overline{c})$$ be the vertices of a triangle $$ABC$$ whose circumcentre is the origin then orthocentre is given by

  • Question 4
    1 / -0

    Let $$\vec{A}= \hat{i}+6\mathrm{i}+6\mathrm{k},\vec{B}=-4\hat{i}+9\hat{i}+6\hat{k},\vec{G}=\displaystyle \dfrac{-5}{3}\hat{i}+\dfrac{22}{3}\hat{j}+\dfrac{22}{3}\hat{k}$$. If $$\mathrm{G}$$ is the centroid then the triangle $$ABC$$ is

  • Question 5
    1 / -0

    If the position vectors of the points $$A, B, C, D$$ are$$(0,2, 1)$$, $$(3,1,1),$$ $$(-5,3,2)$$,$$(2,4,1)$$ respectively and if $$PA+PB+PC+PD=0$$ then the position vector of P is

  • Question 6
    1 / -0

    If $$G$$ is the centroid of the triangle $$ABC$$ then $$\vec{GA}+\vec{GB}+\vec{GC}$$ is equal to 

  • Question 7
    1 / -0

    Let $$\mathrm{A}\mathrm{B}\mathrm{C}$$ be a triangle and let $$\mathrm{S}$$ be its circumcentre and $$\mathrm{O}$$ be its orthocentre. The $$\overline{\mathrm{S}\mathrm{A}}+\overline{\mathrm{S}\mathrm{B}}+\overline{\mathrm{S}\mathrm{C}}= $$

  • Question 8
    1 / -0

    If $$\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$$, then

  • Question 9
    1 / -0

    Taking $$O$$' as origin and the position vectors of $$A, B$$ are $$\vec i+3\vec{j}-2\vec k, 3\vec{i}+\vec{j}-2\vec{k}$$. The vector $$\overrightarrow{OC}$$ is bisecting the angle $$AOB$$ and if $$C$$ is a point on line $$\overrightarrow{AB}$$ then $$C$$ is

  • Question 10
    1 / -0

    If $$\overline{p}$$ is the position vector of the orthocentre and $$\overline{g}$$ is the position vector of the centroid of the triangle $$ABC$$ when circumcenter is the origin and if $$\overline{p}=\lambda\overline{g}$$ then $$\lambda=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now