Self Studies

Vector Algebra ...

TIME LEFT -
  • Question 1
    1 / -0

    Six vectors, a through f have the magnitudes and directions indicated in the figure. Which of the following statements is true?

  • Question 2
    1 / -0

    If $$2\vec{a}+3\vec{b}-5\vec{c}=\vec{0}$$, then ratio in which $$\vec{c}$$ divides $$\vec{AB}$$ is

  • Question 3
    1 / -0

    Let $$ABCD$$ be a parallelogram whose diagonals intersect at $$P$$ and $$O$$ be the origin, then $$\vec { OA } +\vec { OB } +\vec { OC } +\vec { OD } $$ equals

  • Question 4
    1 / -0

    The projection of $$\displaystyle \overset { \rightarrow  }{ a } =2\overset { \wedge  }{ i } +3\overset { \wedge  }{ j } -2\overset { \wedge  }{ k } $$ on $$\displaystyle \overset { \rightarrow  }{ b } =\overset { \wedge  }{ i } +2\overset { \wedge  }{ j } +3\overset { \wedge  }{ k } $$ is:

  • Question 5
    1 / -0

    If $$\vec {a}$$ is a nonzero vector of magnitude $$'a'$$ and $$\lambda$$ a nonzero scalar, then $$\lambda{\vec {a}}$$ is unit vector if

  • Question 6
    1 / -0

    Find $$u+v$$, when $$u=(3,4,-2)$$ and $$v=(0,-4,0)$$.

  • Question 7
    1 / -0

    Find the vector $$w$$ with the initial point $$(9,4)$$ and final point $$(12,6)$$.

  • Question 8
    1 / -0

    Give the vector from $$(2,-7,0)$$ to $$(1,-3,-5)$$.

  • Question 9
    1 / -0

    Find the vector which joins the point A$$(4,5,6)$$ to B$$(10,11,12)$$.

  • Question 10
    1 / -0

    Give the vector from $$(1,-3,-5)$$ to $$(2,-7,0)$$.

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now