Self Studies

Vector Algebra Test - 19

Result Self Studies

Vector Algebra Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\vec{a} = (2, 1, -1), \vec{b} = (1,-1,0), \vec{c} = (5, -1, 1) $$ , then what is the unit vector parallel to $$ \vec{a} + \vec{b} - \vec{c} $$ in the opposite direction ?
    Solution
    GIven : $$\vec{a} = (2, 1, -1), \vec{b} = (1,-1,0), \vec{c} = (5, -1, 1) $$ 
    $$\vec { a } +\vec { b } -\vec { c } =\hat { (2i+ } \hat { j- } \hat { k)+ } (\hat { i- } \hat { j) } -(5\hat { i- } \hat { j } +\hat { k) } =-2\hat { i } +\hat { j } -2\hat { k } $$

    Magnitude of the vector $$=\sqrt { 4+1+4 } =3$$

    So unit vector in the opposite direction $$=-\left( \dfrac { -2\hat { i } +\hat { j } -2\hat { k }  }{ 3 }  \right) =\left( \dfrac { 2\hat { i } -\hat { j } +2\hat { k }  }{ 3 }  \right) $$
    Hence, C is correct.
  • Question 2
    1 / -0
    The position vectors of the points $$A$$ and $$B$$ are respectively $$3\hat { i } -5\hat { j } +2\hat { k } $$ and $$\hat { i } +\hat { j } -\hat { k } $$. What is the length of $$AB$$?
    Solution
    Now, for vectors
    $$A=a_{ 1 }\hat { i } +b_{ 1 }\hat { j } +c_{ 1 }\hat { k }$$
     $$ B=a_{ 2 }\hat { i } +b_{ 2 }\hat { j } +c_{ 2 }\hat { k }$$ 

    length of $$AB=\sqrt { (a_{ 2 }-a_{ 1 })^{ 2 }+(b_{ 2 }-b_{ 1 })^{ 2 }+(c_{ 2 }-c_{ 1 })^2 } $$

    So, for given vectors 
    Length of AB $$= \sqrt { (3-1)^{ 2 }+(-5-1)^{ 2 }+(2+1)^{ 2 } } $$

    $$ =\sqrt { 4+36+9 }$$ 

    $$ =7$$
  • Question 3
    1 / -0
    The unit vector perpendicular to the vector $$\hat{i}-\hat{j}$$ and $$\hat{i}+\hat{j}$$ forming a right handed system, is 
    Solution
    Let $$\vec{a}=\hat{i}-\hat{j}$$

    and $$\vec{b}=\hat{i}+\hat{j}$$ 

    Let the unknown vector be $$\vec{c}$$

    Given $$\vec{c}$$  $$\perp \vec{a}$$ and $$\vec{b}$$ and $$|c|=1$$

    $$\Rightarrow \vec{a}\times\vec{b}=(\hat{i}-\hat{j})\times(\hat{i}+\hat{j})=2\hat{k}$$

    $$\therefore \vec{c}=\dfrac{\vec{a}\times\vec{b}}{|\vec{a}\times\vec{b}|}$$

    $$\Rightarrow \hat{c}=\dfrac{2\hat{k}}{2}$$

    $$\Rightarrow \hat{c}=\hat{k}$$

    Correct option is A
  • Question 4
    1 / -0
    Point $$(4, 0)$$ lies on ________.
    Solution
    $$\vec {XO}$$ is positive x-axis, so $$(4, 0)$$ lies on it.
  • Question 5
    1 / -0
    If the points $$A$$ and $$B$$ are $$\left( 1,2,-1 \right)$$ and $$ \left( 2,1,-1 \right)$$ respectively, then $$ \vec { AB } $$ is
    Solution
    $$\vec{ AB } = $$ $$\left < 2-1, 1-2, -1+1 \right >$$
           
    $$= \left < 1,-1, 0 \right >$$

    $$\therefore\quad\vec{AB} = $$ $$\hat{ i } - \hat{ j} $$
  • Question 6
    1 / -0
    If $$\vec {a} . \hat {i} = \vec {a} . (\hat {i} + \hat {j}) = \vec {a} (\hat {i} + \hat {j} + \hat {k})$$, thus $$\vec {a}=$$
    Solution
    Let $$\vec{a}=x\hat{i}+y\hat{j}+z\hat{k}$$
    And $$\vec{a}.\hat{i}=\vec{a}.(\hat{i}+\hat{j}+\hat{k})=\vec{a}.(i+j)$$
    $$\Rightarrow x.1=x+y+z=x+y$$
    $$\Rightarrow y+z=0$$ and $$y=0 \Rightarrow z=0$$
    Hence,
    $$\vec{a}=k\hat{i}$$ where $$k$$ can be any real no
    from options , $$\vec{a}=i$$
  • Question 7
    1 / -0
    The Polygon Law of Vector Addition is simply an extension of ____________. 
    Solution
    The Polygon Law of Vector Addition is simply an extension of Triangular Law of Vector Addition. Here we take into consideration more than two sides unlike in triangular law of vector addition.
  • Question 8
    1 / -0
    If for unit vectors $$\bar{a}$$ and $$\bar{b}$$, $$\bar{a}+2\bar{b}$$ and $$5\bar{a}-4\bar{b}$$ are each-other, then $$(\bar{a} \wedge \bar{b})=$$ _____________.
    Solution
    $$\vec{a}$$  and $$\vec{b}$$  are unit vector , and  $$5\vec{a}-4\vec{b}$$,   $$\vec{a}+2\vec{b}$$   are perpendicular so 
     $$\Rightarrow$$     $$ (5\vec{a} -4\vec{b}) .(\vec{a} +\vec{2b}) = 0 $$  

     $$\Rightarrow$$  $$5a^2 +10ab -4ab -8b^2$$ = 0

     $$\Rightarrow$$   $$5a^2 +6ab -8b^2$$ = 0....equation 1 

    now we know $$\vec{a}$$ and  $$\vec{b} $$  are unit vector  so  
         $$(\vec{a}.\vec{b})  = \dfrac{1}{2}$$ 

    so angle between $$\vec{a}$$ , $$\vec{b}$$  is $$\dfrac{\pi}{3}$$


     
  • Question 9
    1 / -0
    The number of vectors of unit length perpendicular to vectors $$\bar{a} = ( 1, 1, 0)$$ & $$\bar{b}= (0, 1, 1)$$ is :
    Solution
    There exists two unit length vectors perpendicular to both of the vectors $$\vec{a}$$ and $$\vec{b}$$ and it is given by $$\dfrac{\vec{a}\times \vec{b}}{|\vec{a}\times\vec{b}|}$$ and $$\dfrac{\vec{b}\times \vec{a}}{|\vec{a}\times\vec{b}|}$$.
    So, the number of vector is $$2$$.
  • Question 10
    1 / -0
    For $$A(1, -2, 4), B(5, -1, 7), C(3, 6, -2), D(4, 5, -1)$$, the projection of $$\overline {AB}$$ on $$\overline {CD}$$ is ________.
    Solution
    $$\overline{AB}=\overline{B}-\overline{A}$$
    $$A(1, -2, 4), B(5, -1, 7)$$ ....given
    $$\overline{A}=\overline i-2\overline j +4\overline k $$   and
    $$\overline{B}=5\overline i-\overline j +7\overline k $$
    $$\therefore \overline{AB}=(5-1)\overline i+(-1+2)\overline k+(7-4)\overline k$$
    $$\therefore \overline {AB}=4\overline i+\overline j+3\overline k$$
    $$\overline {AB} = (4, 1, 3)$$
     $$C(3, 6, -2), D(4, 5, -1)$$
    $$\overline{C}=3\overline i+6\overline j -2\overline k $$   and
    $$\overline{D}=4\overline i+5\overline j -\overline k $$
    $$\therefore \overline{CD}=(4-3)\overline i+(5-6)\overline k+(-1+2)\overline k$$
    $$\therefore \overline {CD}=\overline i+\overline j-\overline k$$
    $$\overline{CD} = (1, -1, 1)$$
    Now projection of $$\overline {AB}$$ on $$\overline CD =$$
    $$\left (\dfrac {\overline {AB} \cdot \overline {CD}}{|CD|}\right ) \cdot \hat {CD}$$
    $$= \left (\dfrac {4 - 1 + 3}{\sqrt {4}}\right ) \cdot \dfrac {(1, -1, 1)}{\sqrt {3}}$$
    $$= (2, -2, 2)$$.



Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now