Self Studies

Vector Algebra ...

TIME LEFT -
  • Question 1
    1 / -0

    The unit vector in the direction of $$\overrightarrow{a}$$ is 

  • Question 2
    1 / -0

    If $$\vec{a}$$ be the position vector whose tip is (5,-3), find the coordinates of a point B such that $$ \vec{AB} = \vec{a},$$ the coordinates of A being (4,-1).

  • Question 3
    1 / -0

    find the coordinate of the tip of the position vector which is equivalent to $$ \vec{AB}$$, where the coordinates of A and B are (-1, 3) and (-2, 1) respectively.

  • Question 4
    1 / -0

    If the position vectors of the points $$A(3,4),B(5, -6)$$ and $$C(4,-1)$$ are $$ \vec{a}, \vec{b}, \vec{c}$$ respectively, compute $$ \vec{a}+2\vec{b}-3\vec{c}. $$

  • Question 5
    1 / -0

    If $$\vec a$$ is parallel to $$\vec b \times \vec c$$, then $$(\vec a \times \vec b) \cdot (\vec a \times \vec c)$$ is equal to

  • Question 6
    1 / -0

    If $$\mid \vec a \mid = 2$$ and $$\mid \vec b \mid = 3$$ and $$\vec a \cdot \vec d = 0$$, then $$(\vec a \times (\vec a \times (\vec a \times (\vec a \times \vec b ))))$$ is equal to

  • Question 7
    1 / -0

    Let $$\mathrm{A}\mathrm{B}\mathrm{C}$$ be a triangle and let $$\mathrm{D},\mathrm{E}$$ be the midpoints of the sides $$\mathrm{A}\mathrm{B},\mathrm{A}\mathrm{C}$$ respectively,then $$\hat { BE } +\hat { DC } =$$

  • Question 8
    1 / -0

    The position vectors of $$A,B,C$$ are $$\overline{i}+\overline{j}+\overline{k},\ 4\overline{i}+\overline{j}+\overline{k},\ 4\overline{i}+5\overline{j}+\overline{k}$$ . Then the position vector of the circumcentre of the triangle $$ABC$$ is

  • Question 9
    1 / -0

     If $$\mathrm{O}$$ is the circumcentre and $$\mathrm{O}^{'}$$ is the orthocentre of a triangle $$\mathrm{A}\mathrm{B}\mathrm{C}$$ and if $$\mathrm{A}\mathrm{P}$$ is the circumdiameter then
    $$\vec{\mathrm{A}\mathrm{O}}+\vec{\mathrm{O}^{'}\mathrm{B}}+\vec{\mathrm{O}^{'}\mathrm{C}}=$$

  • Question 10
    1 / -0

    If the vectors  $$\overline{a}=3\overline{i}+\overline{j}-2\overline{k}$$,$$\overline{b}=-\overline{i}+3\overline{j}+4\overline{k},\ \overline{c}=4\overline{i}-2\overline{j}-6\overline{k}$$  form the sides of the triangle then length of the median bisecting the vector $${c}$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now