Self Studies

Vector Algebra Test - 25

Result Self Studies

Vector Algebra Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the vectors $$4\hat{i}-7\hat{j}-2\hat{k},\: \hat{i}+5\hat{j}-3\hat{k},\: 3\hat{i}-\lambda\hat{j}+\hat{k}$$ form a triangle then $$\lambda=$$
    Solution
    Triangle follow Addition Law
    $$\hat{i}+5\hat{j}-3\hat{k}+3\hat{i}-\lambda \hat{j}+\hat{k}=4\hat{i}-7\hat{j}-2\hat{k}$$
    $$(5-\lambda )=-7$$
    $$\lambda =12$$
  • Question 2
    1 / -0
    lf $$4{\vec{i}}+7\vec{j}+8\vec{k} , 2\vec{i}+3\vec{j}+4\vec{k}$$ and $$2\vec{i}+5\vec{j}+7\vec{k}$$ are the position vectors of the vertices $$\mathrm{A},\mathrm{B}$$ and $$\mathrm{C}$$ of $$ \triangle \mathrm{A}\mathrm{B}\mathrm{C}$$, the position vector of $$D$$ the point where the bisector of $$\angle A$$ meets $$\mathrm{B}\mathrm{C}$$ is

    Solution

  • Question 3
    1 / -0
    lf $$\vec{a}$$ and $$\vec{b}$$ are two non-parallel unit vectors and the vector $$\alpha\vec{a}+\vec{b}$$ bisects the internal angle between $$\vec{a}$$ and $$\vec{b}$$, then $$\alpha$$ is
    Solution
    Given $$\vec{a}\ and\ \vec{b}\ are\ non-parallel\ unit\ vector$$
    So
    $$\left | \vec{a} \right |=1$$ and 
    $$\left | \vec{b} \right |=1$$ 
    Internal angle bisector of $$\vec{a}$$ and $$\vec{b}$$ is 
    $$\dfrac{\vec{a}}{\left | \vec{a} \right |}+\dfrac{\vec{b}}{\left | \vec{b} \right |}$$
    $$=\vec{a}+\vec{b}$$                    {$$\left | \vec{a} \right |=1$$ and $$\left | \vec{b} \right |=1$$ }
    and Given bisector is $$\alpha\vec{a}+\vec{b}$$
    Comparing Both the bisector
    $$\vec{a}+\vec{b}=\alpha\vec{a}+\vec{b}$$
    from above eq
    $$\alpha=1$$.
  • Question 4
    1 / -0
    lf $$A=(-3,2,5), B=(-3,4,5)$$ and $$C=(-3,4,7)$$ are the position vectors of vertices of $$\Delta ABC$$ then its circumcentre is
    Solution
    $$\overrightarrow{AB}=2\hat{j}$$
    $$\overrightarrow{AC}=2\hat{j}+2\hat{k}$$
    $$ \overrightarrow{BC}=2\hat{k}$$
    Triangle $$ABC$$ is right angled at angle $$B$$. 
    Hence, the circumcentre is mid point of $$AC$$. Let the circumcentre be $$D$$.
    $$=\frac{1}{2}(-6,6,12)$$
    $$=(-3,3,6)$$
  • Question 5
    1 / -0
    $$\hat { AB } =-3{ \hat { i }  }+4{ \hat { k }  }$$ and $$\hat { BC } =-\overline { i } -2\overline { k } $$ are the sides of the triangle $$ ABC$$ then the length of the median $$AM$$ is
    Solution
     Given 
    $$ \overrightarrow{AB}=-3\hat{i}+4\hat{k} $$
    $$ \overrightarrow{BC}=-\hat{i}-2\hat{k}$$
     
    Let  $$ \overrightarrow{A} = 0\hat{i}$$ $$+0\hat{j}$$ $$+0\hat{k} $$, $$\overrightarrow{AB} =\overrightarrow{B}-\overrightarrow{A}$$
    $$\Rightarrow \overrightarrow{B} =-3\hat{i} +4\hat{k} $$
    $$ \overrightarrow{BC} =\overrightarrow{C}-\overrightarrow{B} $$
    $$ \overrightarrow{C} =  -3\hat{i}+4\hat{k}+(-\hat{i}-2\hat{k})$$, $$\overrightarrow{C} =  -4\hat{i}+2\hat{k} $$  
    Median $$\overrightarrow{AM} =   \dfrac{\overrightarrow{B}+\overrightarrow{C}}{2}$$  
    $$\overrightarrow{AM}= -\dfrac{7}{2}\hat{i} + 3\hat{k}$$  

    $$\left | \overrightarrow{AM} \right | =\sqrt{(\dfrac{7}{2})^2+3^2}$$  

    $$\left | \overrightarrow{AM} \right | =\sqrt{\dfrac{85}{4}}$$ 

    $$ \left | \overrightarrow{AM} \right | =\dfrac{\sqrt{85}}{2}$$
    Hence, option D is correct.
  • Question 6
    1 / -0
    Two forces act at the vertex $$\mathrm{A}$$ of quadrilateral $$\mathrm{A}\mathrm{B}\mathrm{C}\mathrm{D}$$ represented by $$\overline{AB},\ \overline{AD}$$ and two at $$\mathrm{C}$$ represented by $$\overline{CD}$$ and $$\overline{CB}$$. If $$\mathrm{E},\ \mathrm{F}$$ are mid points of $$\overline{AC}$$ and $$\overline{BD}$$ respectively, then their resultant is
    Solution
    Let position vector of $$A,B,C,D$$ are $$\vec{a},\vec{b},\vec{c},\vec{d}$$
    Position Vector of $$E=\dfrac{\vec{a}+\vec{c}}{2}$$
    Position Vector of $$F=\dfrac{\vec{b}+\vec{d}}{2}$$
    So, $$\vec{AB}=\vec{b}-\vec{a}$$,   $$\vec{AD}=\vec{d}-\vec{a}$$, $$\vec{CD}=\vec{d}-\vec{c}$$ and $$\vec{CB}=\vec{b}-\vec{c}$$
    Resultant=$$\vec{AB}+\vec{AD}+\vec{CD}+\vec{CB}$$
    $$=2(\vec{b}-a+\vec{d}-\vec{c})$$
    $$=2(2F-2E)$$
    $$=4\vec{FE}$$

  • Question 7
    1 / -0
    If point $$O$$ is the centre of a circle circumscribed about a triangle $$ABC$$. Then $$\overline{OA}\sin 2A+\overline{OB}\sin2B+\overline{OC}\sin 2C=$$
    Solution
    In order to make the problem easier and take less time to solve it, we take a simpler case and take the triangle to be an equilateral one.
    Thus $$OA = OB = OC$$ and $$sin 2A = sin 2B = sin 2C = sin (120^0) = \dfrac{\sqrt {3}}{2}$$
    So after solving we get $$\overline {OA}$$ + $$\overline{OB} $$ + $$\overline{OC}$$  $$= 0.$$
    Hence the answer comes out to be $$0.$$
  • Question 8
    1 / -0
    Let $$G$$ and $$G^{1}$$ be the centroids of the triangles $$ABC$$ and $$A^{1}B^{1}C^{1}$$ respectively, then $$AA^{1}+BB^{1}+CC^{1}$$ is equal to
    Solution
    $$G=\dfrac{A+B+C}{3}\Rightarrow A+B+C=3G$$ ......(1)
    and $$G^1=\dfrac{A^1+B^1+C^1}{3}\Rightarrow A^1+B^1+C^1=3G^1$$ ......(2)
    $$\therefore AA^1+BB^1+CC^1 = (A-A^1)+(B-B^1)+(C-C^1)$$
    $$=(A+B+C)-(A^1+B^1+C^1)$$
    $$= 3G-3G^1=3(G-G^1)=3GG^1$$, Using (1) and (2)
  • Question 9
    1 / -0
    The ratio in which $$\overline{i}+2\overline{j}+3\overline{k}$$ divides the join $$\mathrm{o}\mathrm{f}-2\overline{i}+3\overline{j}+5\overline{k}$$ and $$7\overline{i}-\overline{k}$$ is
    Solution

    Given
    $$ i+j+k$$ divides $$ -2\overline{ i } +3\overline { j } +5\overline { k }, 7\overline { i } -\overline { k }$$ 
    $$ { x }_{ 1 }=-2, { x }_{ 2 }=1, { x }_{ 3 }=7$$ 
    Now, Required Ratio$$ = { x }_{ 1 }-{ x }_{ 2 }: { x }_{ 2 }-{ x }_{ 3 }$$(or) $${ y }_{ 1 }-{ y }_{ 2 } : { y }_{ 2 }-{ y }_{ 3 } =-2-(1) : 1-7 = -3: -6 = 1:2$$
     OPTION B

  • Question 10
    1 / -0
    Orthocentre of an equilateral triangle $$ABC$$ is the origin $$\mathrm{O}$$. If $$A=\overline{a},\ B=\overline{b},\ C=\overline{c}$$ then $$\overline{AB}+2\overline{BC}+3\overline{CA}=$$
    Solution
    $$\overline{AB}+2\overline{BC}+3\overline{CA}$$
    $$=\vec{b}-\vec{a}+2(\vec{c}-\vec{b})+3(\vec{a}-\vec{c})$$
    $$=-\vec{b}+2\vec{a}- \vec{c}$$  ----------(1)

    orthocentre = circumcenter (property of equalatoral $$\Delta $$)
    so circumecentre $$= \dfrac{\vec{a}+\vec{b}+\vec{c}}{3}$$
    $$0= \dfrac{\vec{a}+\vec{b}+\vec{c}}{3}$$
    $$-\vec{b}=\vec{a}+\vec{c}$$
    so put in (1)
    $$3\vec{a}$$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now