Self Studies

Vector Algebra Test - 26

Result Self Studies

Vector Algebra Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the vertices of a $$\Delta ABC$$ are $$A= (1,-1,-3)$$ , $$B= (2, 1, -2)$$ and $$C=(-5,2,-6)$$ then the length of the internal bisector of angle $$A$$ is
    Solution
    $$AD$$ bisects the $$BC$$ in ratio of $$\dfrac{|AB|}{|AC|}=\dfrac{|BD|}{|CD|}=\dfrac{\sqrt6}{\sqrt{54}}=\dfrac{1}{3}$$

    $$\dfrac{BD}{DC}=\dfrac{1}{3}=\dfrac{c}{b}$$

    Coordinates of $$D$$ is $$=\dfrac{1}{4}(3B+C)$$   (section formula)

    $$D(\dfrac{1}{4},\dfrac{5}{4},-3)$$

    Length of $$ AD=\sqrt{(1-\dfrac{1}{4})^{2}+(-1-\dfrac{5}{4})^{2}+(-3+3)^{2}}$$
                           
                           $$=\dfrac{\sqrt{90}}{4}$$

                           $$=\dfrac{3\sqrt{10}}{4}$$

  • Question 2
    1 / -0
    The condition for the vectors $$\vec{a},\vec{b},\vec{c},\vec{d}$$ to be the sides of a parallelogram taken in order is
    Solution
    Consider the vectors $$\vec{a}$$ and $$\vec{b}$$.
    Now, the sides with length as $$\vec a , \vec b$$ forms two sides of a triangle and diagonal forms the third side of the same triangle.
    $$\therefore$$ By using triangle law of vector addition, the diagonal is given by
    $$\vec{a}+\vec{b}$$ ........... (i) 
    Now consider the vectors $$\vec{c}$$ and $$\vec{d}$$.
    The same diagonal can be written as $$\vec{c}+\vec{d}$$ using triangle law of vector addition.
    $$\therefore$$ $$\vec{a}+\vec{b}=\vec{c}+\vec{d}$$.
    Hence, option A is correct.

  • Question 3
    1 / -0
    Let $$A$$ and $$B$$ be points with position vectors $$\overline{a}$$ and $$\overline{b}$$ with respect to origin $$O$$. If the point $$C$$ on $$OA$$ is such that $$2\overline{AC}=\overline{CO}$$, $$\overline{CD}$$ is parallel to $$\overline{OB}$$ and $$|\overline{CD}|=3|\overline{OB}|$$ then $$AD$$ is
    Solution
    Given that $$2 \overrightarrow{AC}=\overrightarrow{CO}$$
    $$2(\vec{c}-\vec{a})=-\vec{c}$$
    $$3\vec{c}=2\vec{a}$$
    $$\vec{c}=\dfrac{2\vec{a}}{3}$$
    Also given $$\overrightarrow{CD}\left |  \right |\overrightarrow{OB}$$
    $$\Rightarrow \vec{a}-\vec{c}=k\vec{b}$$
    $$\Rightarrow \left | \vec{d}-\vec{c} \right |=3\left | \vec{b} \right |$$
    $$\Rightarrow k\left | \vec{b} \right |=3\left | \vec{b} \right |$$
    $$\Rightarrow k=3$$
    and $$\vec{d}=\vec{c}+3\vec{b}$$
    $$\Rightarrow \overrightarrow{AD}=\vec{d}-\vec{a}$$ $$=3\vec{b}+\vec{c}-\vec{a}$$
    $$\Rightarrow \overrightarrow{AD}=3\vec{b}-\dfrac{\vec{a}}{3}$$
  • Question 4
    1 / -0
    The adjacent sides of a parallelogram are $$2{ \hat { i }  }+4{ \hat { j }  }-5{ \hat { k }  }$$ and $$ { \hat { i }  }+2{ \hat { j }  }{ + }3{ \hat { k }  }$$ then the unit vector parallel to a diagonal is
    Solution
    As in this question direction of vector is not specified then it can be
    $$\pm \vec{a}\ \pm \vec{b}=$$ Diagonal Vectors
    Diagonal vector =$$\dfrac{\vec{a}+\vec{b}}{|\vec{a}+\vec{b}|}=\dfrac{3i+6\hat{j}-2\hat{k}}{\sqrt{49}}$$
    or $$\dfrac{\vec{a}-\vec{b}}{|\vec{a}-\vec{b}|}=\dfrac{i+2\hat{j}-8\hat{k}}{\sqrt{69}}$$

    or $$\dfrac{\vec{-a}+\vec{b}}{|\vec{-a}+\vec{b}|}=\dfrac{-i-2\hat{j}+8\hat{k}}{\sqrt{69}}$$

  • Question 5
    1 / -0
    If the diagonals of a parallelogram are $$\overline{i}+5\overline{j}-2\overline{k}$$ and $$-2\overline{i}+\overline{j}+3\overline{k}$$, then the lengths of its sides are
    Solution
    Let $$A$$ be origin
    $$\left | \overrightarrow{AC} \right |= (\hat{i}+5\hat{j}-2\hat{k})$$
    $$(C=1,5,-2)$$
     $$O$$ is mid point of $$AC$$,  $$O= (\frac{1}{2}, \frac{5}{2}, -1)$$
    $$B= (a,b,c)$$
    $$\overrightarrow{OB}= \dfrac{1}{2}(\overrightarrow{BD})$$
    $$(a\dfrac{-1}{2})\hat{i}+(b\dfrac{-5}{2})\hat{j}+(c+1)\hat{k}= -\hat{i}+\dfrac{1}{2}\hat{j}+\dfrac{3}{2}\hat{k}$$
    $$a=\dfrac{-1}{2}\ b=3\ c= \dfrac{1}{2}$$
    $$\left | \overrightarrow{AB} \right |= \sqrt{\frac{1}{4}+9+\dfrac{1}{4}}= \sqrt{\dfrac{38}{2}}$$
    $$\left | \overrightarrow{BC} \right |= \sqrt{\frac{9}{4}+4+\dfrac{25}{4}}= \sqrt{\dfrac{50}{2}}$$

  • Question 6
    1 / -0
    Let $$A({\vec{a}})$$ , $$B({\vec{b}}), C({\vec{c}})$$ be the vertices of the triangle $$ABC$$ and let $$DEF$$ be the mid points of the sides $$BC, CA, AB$$ respectively. If $$P$$ divides the median $$AD$$ in the ratio $$2:1$$ then the position vector of $$P$$ is
    Solution
    Given : 
    $$A(\vec{a}), B(\vec{b}), C(\vec{c})$$ are the vertices of the triangle $$ABC$$.
    $$D$$ is the midpoint of $$BC$$
    $$\implies D=\left(\dfrac{\vec{b}+\vec{c}}{2}\right)$$
    $$E$$ is the midpoint of $$CA$$
    $$\implies E=\left(\dfrac{\vec{a}+\vec{c}}{2}\right)$$
    $$F$$ is the midpoint of $$AB$$
    $$\implies F=\left(\dfrac{\vec{a}+\vec{b}}{2}\right)$$
    Now, $$AD, BE$$ and $$CF$$ are the medians of triangle $$ABC$$
    All three medians intersects at point $$P$$.
    $$\because\ P$$ divides $$AD$$ in the ratio $$2:1$$ and other medians also intersect at $$P$$.
    $$\implies P$$ divides all three medians in the ratio $$2:1$$  
    $$\implies P$$ is the centroid of the triangle $$ABC$$.
    $$\implies P= \dfrac{\vec{a}+\vec{b}+\vec{c}}{3}$$   ...... By def$$^n$$ of centroid.
    Hence, option C is correct.

  • Question 7
    1 / -0
    If $$I$$ is the centre of a circle inscribed in a triangle $$ABC$$, then $$|\overline{BC}|\overline{IA}+|\overline{CA}|\overline{IB}+|\overline{AB}|\overline{IC}$$ is
    Solution
    We know that the position vector of the incenter of a $$\triangle ABC$$ is given by $$\displaystyle \frac { BC.\overline { a } +CA.\overline { b } +AB.\overline { c }  }{ BC+CA+AB } $$
    where $$\displaystyle \overline { a } ,\overline { b } ,\overline { c } $$ are the affixes of the vertices of the triangle. 
    Therefore, in the given triangle $$ABC,$$ the affix of $$I$$ is given by 
                   $$\displaystyle \dfrac { \left| \overline { BC }  \right| \overline { IA } +\left| \overline { CA }  \right| \overline { IB } +\left| \overline { AB }  \right| \overline { IC }  }{ \left| \overline { BC }  \right| +\left| \overline { CA }  \right| +\left| \overline { AB }  \right|  } $$
    But it is the position vector of $$I$$ with respect to $$O.$$
    $$\displaystyle \therefore  \  \overline { O } =\dfrac { \left| \overline { BC }  \right| \overline { IA } +\left| \overline { CA }  \right| \overline { IB } +\left| \overline { AB }  \right| \overline { IC }  }{ \left| \overline { BC }  \right| +\left| \overline { CA }  \right| +\left| \overline { AB }  \right|  } $$
    $$\displaystyle \Rightarrow \left| \overline { BC }  \right| \overline { IA } +\left| \overline { CA }  \right| \overline { IB } +\left| \overline { AB }  \right| \overline { IC } =0$$
  • Question 8
    1 / -0
    Let $$A=2\hat{i}+4\hat{j}-\hat{k}$$, $$B=4\hat{i}+5\hat{j}{+}\hat{k}$$. If the centroid $$G$$ of the triangle $$ABC$$ is $$3\hat{i}+5\hat{j}-\hat{k}$$, then the position vector of $$C$$ is
    Solution
    Centroid is given by
    $$G= \dfrac{\vec{A}+\vec{B}+\vec{C}}{3}$$
    Putting given values to find $$\vec{C}$$
    $$\Rightarrow  \displaystyle 3(3\hat{i}+5\hat{j}-k)= 2\hat{i}+4\hat{j}-\hat{k}+4\hat{i}+5\hat{j}+\hat{k}+\vec{C}$$
    $$\Rightarrow \displaystyle 3\hat{i}+6\hat{j}-3\hat{k}=\vec{C}$$

  • Question 9
    1 / -0
    If $$\vec{{r}} {\times} \vec{{a}}=\vec{{b}}{\times}\vec{{a}};\ \vec{{r}}{\times}\vec{{b}}=\vec{{a}}{\times}\vec{{b}};\ \vec{a}\neq 0,\vec{b}\neq 0,\vec{a}\neq\lambda\vec{b};\ \vec{a}$$ is not perpendicular to $$\vec{b}$$, then $$\vec{r}=$$
    Solution
    Given, $$\vec{r} \times \vec{a} = -(\vec{a} \times \vec{b})$$ and $$\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$$
    Thus, $$\vec{r} \times \vec{a} = -(\vec{r} \times \vec{b})$$
    $$\Rightarrow \vec{r} \times (\vec{a} + \vec{b}) = 0$$
    $$\Rightarrow \vec{r} = \lambda(\vec{a} + \vec{b})$$
    Hence, option B.
  • Question 10
    1 / -0
    The plane $$2x-3y+z+6=0$$ divides the line segment joining $$(2, 4, 16)$$ and $$(3, 5, -4)$$ in the ratio
    Solution
    Let the line segment joining points $$P(2,4,16)$$ and $$Q(3,5,-4)$$ be divided by the given plane in the ratio $$k:1$$ at the point $$R.$$
    Then co-ordinates of $$R$$ are $$\displaystyle \left( \frac { 3k+2 }{ k+1 } ,\frac { 5k+4 }{ k+1 } ,\frac { -4k+16 }{ k+1 }  \right) $$
    Since $$R$$ lies on the plane $$2x-3y+z+6=0,$$ 
    We have, $$\displaystyle 2\left( \frac { 3k+2 }{ k+1 }  \right) -3\left( \frac { 5k+4 }{ k+1 }  \right) +\left( \frac { -4k+16 }{ k+1 }  \right) +6=0$$
    $$\displaystyle \Rightarrow 2\left( 3k+2 \right) -3\left( 5k+4 \right) +\left( -4k+16 \right) +6\left( k+1 \right) =0$$
    $$\displaystyle \Rightarrow -7k+14=0\Rightarrow k=2$$
    $$\therefore PQ$$ is divided by the given plane in the ratio $$k:1$$ i.e., $$2:1$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now