Self Studies

Vector Algebra Test - 35

Result Self Studies

Vector Algebra Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\bar{\alpha }$$, $$\bar{\beta }$$ and $$\bar{\gamma }$$ be vertices of a $$\triangle $$ whose circumcenter is at the origin, then orthocenter is given by
    Solution
    We have $$\bar\alpha$$, $$\bar\beta$$, $$\bar\gamma$$ vertices of a triangle.
    Centroid of the $$\triangle $$ is $$\displaystyle \dfrac{\bar{\alpha }+\bar{\beta }+\bar{\gamma }}{3}$$
    Now centroid divides the line joining orthocenter and circumcenter in ratio $$2:1$$
    $$\therefore $$ orthocenter of the $$\triangle $$ is $$\bar{\alpha }+\bar{\beta }+\bar{\gamma }$$
  • Question 2
    1 / -0
    If $$S$$ is the circumcenter, $$O$$ is the orthocenter of $$\triangle ABC$$, then $$\displaystyle \vec{SA}+\vec{SB}+\vec{SC}= $$
    Solution
    A very important property to be remembered of a triangle is that the centroid divides the line joining orthocentre and circumcentre in the ratio $$2 : 1$$
    $$\Rightarrow C = \dfrac{2S + O}{3}$$

    $$\Rightarrow\dfrac{\overline{A} + \overline{B} + \overline{C}}{3} = \dfrac{2\overline{S} + \overline{O}}{3}$$

    $$\Rightarrow \overline{A} + \overline{B} + \overline{C} = 2\overline{S} + \overline{O}$$

    Thus, $$\overline{SA} + \overline{SB} + \overline{SC} = \overline{A} + \overline{B} + \overline{C} - 3\overline{S} = \overline{SO}$$
  • Question 3
    1 / -0
    For non-zero vectors $$\bar{a}$$, $$\bar{b}$$ and $$\bar{c}$$, $$\left | \left ( \bar{a}\times \bar{b} \right ).\bar{c} \right |=\left | \bar{a} \right |\left | \bar{b} \right |\left | \bar{c} \right |$$ iff
    Solution
    $$\left | \left ( \overrightarrow{a}\times \overrightarrow{b} \right ).\overrightarrow{c} \right |=\left | \overrightarrow{a} \right |\left | \overrightarrow{b} \right |\left | \overrightarrow{c} \right |$$          $$(\theta $$ is angle between $$\overrightarrow{c}$$ and plane of $$\overrightarrow{a}\times \overrightarrow{b})$$

    $$\Rightarrow \overrightarrow{c}$$ is $$\perp $$ to $$\overrightarrow{a}$$ and $$\overrightarrow{b}$$ for $$\cos \theta =1$$

    and $$\left | \overrightarrow{a}\times \overrightarrow{b} \right |=\left | \overrightarrow{a} \right |\left | \overrightarrow{b} \right |$$   iff   $$\overrightarrow{a}\perp \overrightarrow{b}$$

    $$\Rightarrow \overrightarrow{a}\cdot \overrightarrow{b}=0=\overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{c}\cdot \overrightarrow{a}$$
  • Question 4
    1 / -0
    Two planes are perpendicular to each other,one of them contains vector $$\bar{a}$$ and $$\bar{b}$$, other contains $$\bar{c}$$ and $$\bar{d}$$ then $$\left ( \bar{a}\times \bar{b} \right )\cdot \left (\bar{c}\times \bar{d}  \right )=$$
    Solution
    Normal vector to plane $$\bar{a}, \bar{b}$$ is given by, $$\bar{a}\times \bar{b}$$
    And normal vector to plane $$\bar{c}, \bar{d}$$ is given by, $$\bar{c}\times \bar{d}$$
    Now for planes to be pependicular, the angle between their normal should be $$90^{\circ}$$
    $$\Rightarrow (\bar{a}\times \bar{b})\cdot (\bar{c}\times \bar{d}) = |\bar{a}\times \bar{b}||\bar{c}\times \bar{d}|\cos 90^{\circ} = 0$$
  • Question 5
    1 / -0
    In a parallelogram $$ABCD,\left| AB \right| =a,\left| AD \right| =b$$ and $$\left| AC \right| =c.$$ Then, $$DB.AB$$ has the value
    Solution
    $$\because DB=DA+AB$$ or, $$DA=DB-AB$$
    $$\displaystyle \therefore { \left( DA \right)  }^{ 2 }={ \left( DB \right)  }^{ 2 }+{ \left( AB \right)  }^{ 2 }-2DB.AB$$
    In parallelogram $$\displaystyle 2\left( { a }^{ 2 }+{ b }^{ 2 } \right) ={ c }^{ 2 }+{ DB }^{ 2 }$$
    $$\displaystyle \therefore { \left( DB \right)  }^{ 2 }=2{ a }^{ 2 }+2{ b }^{ 2 }-{ c }^{ 2 }$$
    $$\therefore$$ From (1), $$\displaystyle { b }^{ 2 }=2{ a }^{ 2 }+{ 2b }^{ 2 }-{ c }^{ 2 }+{ a }^{ 2 }-2AB.DB$$
    $$\displaystyle \therefore AB.DB=\dfrac { 3{ a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 } }{ 2 } $$.
  • Question 6
    1 / -0
    If a. $$\displaystyle b\neq 0,$$ find the vector r which satisfies the equations $$\displaystyle \left ( r-c \right )\times b= 0, r.a= 0$$
    Solution
    $$\displaystyle \left ( r-c \right )\times b= 0\Rightarrow r-c$$ and b are collinear
    $$\displaystyle \therefore r-c= kb$$ or $$\displaystyle r= c+kb$$ ...(1)
    Again $$\displaystyle r.a=0 \therefore \left ( c+kb \right ).a= 0$$ or 
    $$\displaystyle c.a+kb.a= 0 \therefore k= -\dfrac{a.c}{a.b}$$
    Substitute in (1), we get $$\displaystyle r= c-\left ( \dfrac{a.c}{a.b} \right )b$$
    Hence $$\displaystyle r= \dfrac{\left ( a.b \right )c-\left ( a.c \right )b}{a.b}$$
  • Question 7
    1 / -0
    If $$\alpha \bar{a}+\beta \bar{b}+\gamma \bar{c}=0$$, then $$\left ( \bar{a}\times \bar{b} \right )\times \left [ \left ( \bar{b}\times \bar{c} \right )\times \left ( \bar{c}\times \bar{a} \right ) \right ]$$ is equal to
    Solution
    Since $$\alpha \bar{a}+\beta \bar{b}+\gamma \bar{c}=0$$
    $$\therefore $$ the vectors $$\bar{a}$$, $$\bar{b}$$ and $$\bar{c}$$ are coplanar
    and thus $$\left ( \bar{c}\times \bar{b} \right )$$ and $$\left ( \bar{c}\times \bar{a} \right )$$ are coplanar.
    $$\therefore $$ $$\left ( \bar{b}\times \bar{c} \right )\times \left ( \bar{c}\times \bar{a} \right )=0$$
    Hence option $$A$$ becomes correct.
  • Question 8
    1 / -0
    The position vector of the points $$A$$ and $$B$$ are respectively $$\bar{a}$$ and $$\bar{b}$$  divides $$AB$$ in the ratio $$3:1$$ and $$Q$$ iis the midpoint of $$AP$$. The position vector of $$Q$$ is
    Solution
    Given 
    position vector of A
    $$\vec{OA}=\vec{a}$$
    position vector of B
    $$\vec{OB}=\vec{b}$$
    Point P divides AB in ration $$3:1$$
    position vector of Point P
    $$\vec{OP}=\dfrac { 3\bar { OB } +\bar { OA }  }{ 4 } $$
    $$\vec{OP}=\dfrac { 3\bar { b } +\bar { a}  }{ 4 } $$
    Here Q is the mid point of AP
    SO $$\vec{OQ}=\dfrac{\vec{OA}+\vec{OP}}{2}$$
    $$Q=\dfrac { \dfrac { 3\bar { b } +\bar { a }  }{ 4 } +\bar { a }  }{ 2 } =\dfrac { 5\bar { a } +3\bar { b }  }{ 8 } $$
  • Question 9
    1 / -0
    For three unit vectors $$\bar{a}$$, $$\bar{b}$$ and $$\bar{c}$$, if $$\bar{a}+\bar{b}+\bar{c}= \bar{0}$$, then the value of $$\bar{a}\cdot \left ( \bar{b}+\bar{c} \right )+\bar{b}\cdot \left ( \bar{c}+\bar{a} \right )+\bar{c}\cdot \left ( \bar{a}+\bar{b} \right )$$ is equal to
    Solution
    Given $$\bar{a} + \bar{b} + \bar{c} = 0$$
    We have
    $$\therefore\bar{a}\cdot \left ( \bar{b}+\bar{c} \right )+\bar{b}\cdot \left ( \bar{c}+\bar{a} \right )+\bar{c}\cdot \left ( \bar{a}+\bar{b} \right ) $$
    $$= \bar{a}. - \bar{a} - \bar{b}.\bar{b} - \bar{c}.\bar{c}$$
    $$= -a^2 - b^2 - c^2$$
    If all the three vectors are unit vectors, the answer will be $$-3$$
  • Question 10
    1 / -0
    Let ABCD be a parallelogram whose diagonals intersect at P and let O be the origin, then $$\bar{OA}+\bar{OB}+\bar{OC}+\bar{OD}=$$
    Solution
    Let the position vectors of $$A, B, C, D, P$$ be $$\overline{a}, \overline{b}, \overline{c}, \overline{d}, \overline{p}$$ respectively.    
    We need $$\overline{a} + \overline{b} + \overline{c} + \overline{d}$$
    Also, $$\overline{p} = \dfrac{\overline{a} + \overline{b}}{2} = \dfrac{\overline{c} + \overline{d}}{2}$$.........$$(\because$$ diagonals bisect each other$$)$$
    So, the question needed becomes $$4\overline{p} = 4\overline{OP} $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now