Self Studies

Vector Algebra Test - 35

Result Self Studies

Vector Algebra Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If αˉ\bar{\alpha }, βˉ\bar{\beta } and γˉ\bar{\gamma } be vertices of a \triangle whose circumcenter is at the origin, then orthocenter is given by
    Solution
    We have αˉ\bar\alpha, βˉ\bar\beta, γˉ\bar\gamma vertices of a triangle.
    Centroid of the \triangle is αˉ+βˉ+γˉ3\displaystyle \dfrac{\bar{\alpha }+\bar{\beta }+\bar{\gamma }}{3}
    Now centroid divides the line joining orthocenter and circumcenter in ratio 2:12:1
    \therefore orthocenter of the \triangle is αˉ+βˉ+γˉ\bar{\alpha }+\bar{\beta }+\bar{\gamma }
  • Question 2
    1 / -0
    If SS is the circumcenter, OO is the orthocenter of ABC\triangle ABC, then SA+SB+SC=\displaystyle \vec{SA}+\vec{SB}+\vec{SC}=
    Solution
    A very important property to be remembered of a triangle is that the centroid divides the line joining orthocentre and circumcentre in the ratio 2:12 : 1
     C=2S+O3\Rightarrow C = \dfrac{2S + O}{3}

    A+B+C3=2S+ O3\Rightarrow\dfrac{\overline{A} + \overline{B} + \overline{C}}{3} = \dfrac{2\overline{S} + \overline{O}}{3}

    A+B+C=2S+ O\Rightarrow \overline{A} + \overline{B} + \overline{C} = 2\overline{S} + \overline{O}

    Thus, SA+ SB+ SC= A+ B+ C3S= SO\overline{SA} + \overline{SB} + \overline{SC} = \overline{A} + \overline{B} + \overline{C} - 3\overline{S} = \overline{SO}
  • Question 3
    1 / -0
    For non-zero vectors aˉ\bar{a}, bˉ\bar{b} and cˉ\bar{c}, (aˉ×bˉ).cˉ=aˉbˉcˉ\left | \left ( \bar{a}\times \bar{b} \right ).\bar{c} \right |=\left | \bar{a} \right |\left | \bar{b} \right |\left | \bar{c} \right | iff
    Solution
    (a×b).c=abc\left | \left ( \overrightarrow{a}\times \overrightarrow{b} \right ).\overrightarrow{c} \right |=\left | \overrightarrow{a} \right |\left | \overrightarrow{b} \right |\left | \overrightarrow{c} \right |          (θ(\theta is angle between c\overrightarrow{c} and plane of a×b)\overrightarrow{a}\times \overrightarrow{b})

    c\Rightarrow \overrightarrow{c} is \perp to a\overrightarrow{a} and b\overrightarrow{b} for cosθ=1\cos \theta =1

    and a×b=ab\left | \overrightarrow{a}\times \overrightarrow{b} \right |=\left | \overrightarrow{a} \right |\left | \overrightarrow{b} \right |   iff   ab\overrightarrow{a}\perp \overrightarrow{b}

    ab=0=bc=ca\Rightarrow \overrightarrow{a}\cdot \overrightarrow{b}=0=\overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{c}\cdot \overrightarrow{a}
  • Question 4
    1 / -0
    Two planes are perpendicular to each other,one of them contains vector aˉ\bar{a} and bˉ\bar{b}, other contains cˉ\bar{c} and dˉ\bar{d} then (aˉ×bˉ)(cˉ×dˉ )=\left ( \bar{a}\times \bar{b} \right )\cdot \left (\bar{c}\times \bar{d}  \right )=
    Solution
    Normal vector to plane aˉ,bˉ\bar{a}, \bar{b} is given by, aˉ×bˉ\bar{a}\times \bar{b}
    And normal vector to plane cˉ,dˉ\bar{c}, \bar{d} is given by, cˉ×dˉ\bar{c}\times \bar{d}
    Now for planes to be pependicular, the angle between their normal should be 9090^{\circ}
    (aˉ×bˉ)(cˉ×dˉ)=aˉ×bˉcˉ×dˉcos90=0\Rightarrow (\bar{a}\times \bar{b})\cdot (\bar{c}\times \bar{d}) = |\bar{a}\times \bar{b}||\bar{c}\times \bar{d}|\cos 90^{\circ} = 0
  • Question 5
    1 / -0
    In a parallelogram ABCD,AB=a,AD=bABCD,\left| AB \right| =a,\left| AD \right| =b and AC=c.\left| AC \right| =c. Then, DB.ABDB.AB has the value
    Solution
    DB=DA+AB\because DB=DA+AB or, DA=DBABDA=DB-AB
     (DA) 2=(DB) 2+(AB) 22DB.AB\displaystyle \therefore { \left( DA \right)  }^{ 2 }={ \left( DB \right)  }^{ 2 }+{ \left( AB \right)  }^{ 2 }-2DB.AB
    In parallelogram  2(a2+b2)=c2+DB2\displaystyle 2\left( { a }^{ 2 }+{ b }^{ 2 } \right) ={ c }^{ 2 }+{ DB }^{ 2 }
     (DB) 2=2a2+2b2c2\displaystyle \therefore { \left( DB \right)  }^{ 2 }=2{ a }^{ 2 }+2{ b }^{ 2 }-{ c }^{ 2 }
    \therefore From (1),  b2=2a2+2b2c2+a22AB.DB\displaystyle { b }^{ 2 }=2{ a }^{ 2 }+{ 2b }^{ 2 }-{ c }^{ 2 }+{ a }^{ 2 }-2AB.DB
     AB.DB=3a2+b2c22\displaystyle \therefore AB.DB=\dfrac { 3{ a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 } }{ 2 } .
  • Question 6
    1 / -0
    If a. b0,\displaystyle b\neq 0, find the vector r which satisfies the equations (rc)×b=0,r.a=0\displaystyle \left ( r-c \right )\times b= 0, r.a= 0
    Solution
    (rc)×b=0rc\displaystyle \left ( r-c \right )\times b= 0\Rightarrow r-c and b are collinear
    rc=kb\displaystyle \therefore r-c= kb or r=c+kb\displaystyle r= c+kb ...(1)
    Again r.a=0(c+kb).a=0\displaystyle r.a=0 \therefore \left ( c+kb \right ).a= 0 or 
    c.a+kb.a=0k=a.ca.b\displaystyle c.a+kb.a= 0 \therefore k= -\dfrac{a.c}{a.b}
    Substitute in (1), we get r=c(a.ca.b)b\displaystyle r= c-\left ( \dfrac{a.c}{a.b} \right )b
    Hence r=(a.b)c(a.c)ba.b\displaystyle r= \dfrac{\left ( a.b \right )c-\left ( a.c \right )b}{a.b}
  • Question 7
    1 / -0
    If αaˉ+βbˉ+γcˉ=0\alpha \bar{a}+\beta \bar{b}+\gamma \bar{c}=0, then (aˉ×bˉ)×[(bˉ×cˉ)×(cˉ×aˉ)]\left ( \bar{a}\times \bar{b} \right )\times \left [ \left ( \bar{b}\times \bar{c} \right )\times \left ( \bar{c}\times \bar{a} \right ) \right ] is equal to
    Solution
    Since αaˉ+βbˉ+γcˉ=0\alpha \bar{a}+\beta \bar{b}+\gamma \bar{c}=0
    \therefore the vectors aˉ\bar{a}, bˉ\bar{b} and cˉ\bar{c} are coplanar
    and thus (cˉ×bˉ)\left ( \bar{c}\times \bar{b} \right ) and (cˉ×aˉ)\left ( \bar{c}\times \bar{a} \right ) are coplanar.
    \therefore (bˉ×cˉ)×(cˉ×aˉ)=0\left ( \bar{b}\times \bar{c} \right )\times \left ( \bar{c}\times \bar{a} \right )=0
    Hence option AA becomes correct.
  • Question 8
    1 / -0
    The position vector of the points AA and BB are respectively aˉ\bar{a} and bˉ\bar{b}  divides ABAB in the ratio 3:13:1 and QQ iis the midpoint of APAP. The position vector of QQ is
    Solution
    Given 
    position vector of A
    OA=a\vec{OA}=\vec{a}
    position vector of B
    OB=b\vec{OB}=\vec{b}
    Point P divides AB in ration 3:13:1
    position vector of Point P
    OP=3OBˉ+OAˉ 4\vec{OP}=\dfrac { 3\bar { OB } +\bar { OA }  }{ 4 }
    OP=3bˉ+aˉ 4\vec{OP}=\dfrac { 3\bar { b } +\bar { a}  }{ 4 }
    Here Q is the mid point of AP
    SO OQ=OA+OP2\vec{OQ}=\dfrac{\vec{OA}+\vec{OP}}{2}
    Q=3bˉ+aˉ 4+aˉ 2=5aˉ+3bˉ 8Q=\dfrac { \dfrac { 3\bar { b } +\bar { a }  }{ 4 } +\bar { a }  }{ 2 } =\dfrac { 5\bar { a } +3\bar { b }  }{ 8 }
  • Question 9
    1 / -0
    For three unit vectors aˉ\bar{a}bˉ\bar{b} and cˉ\bar{c}if aˉ+bˉ+cˉ=0ˉ\bar{a}+\bar{b}+\bar{c}= \bar{0}, then the value of aˉ(bˉ+cˉ)+bˉ(cˉ+aˉ)+cˉ(aˉ+bˉ)\bar{a}\cdot \left ( \bar{b}+\bar{c} \right )+\bar{b}\cdot \left ( \bar{c}+\bar{a} \right )+\bar{c}\cdot \left ( \bar{a}+\bar{b} \right ) is equal to
    Solution
    Given aˉ+ bˉ+ cˉ=0\bar{a} + \bar{b} + \bar{c} = 0
    We have
    aˉ(bˉ+cˉ)+bˉ(cˉ+aˉ)+cˉ(aˉ+bˉ)\therefore\bar{a}\cdot \left ( \bar{b}+\bar{c} \right )+\bar{b}\cdot \left ( \bar{c}+\bar{a} \right )+\bar{c}\cdot \left ( \bar{a}+\bar{b} \right )
    =aˉ. aˉ bˉ.bˉ cˉ.cˉ= \bar{a}. - \bar{a} - \bar{b}.\bar{b} - \bar{c}.\bar{c}
    =a2b2c2= -a^2 - b^2 - c^2
    If all the three vectors are unit vectors, the answer will be 3-3
  • Question 10
    1 / -0
    Let ABCD be a parallelogram whose diagonals intersect at P and let O be the origin, then OAˉ+OBˉ+OCˉ+ODˉ=\bar{OA}+\bar{OB}+\bar{OC}+\bar{OD}=
    Solution
    Let the position vectors of A,B,C,D,PA, B, C, D, P be a, b, c, d, p\overline{a}, \overline{b}, \overline{c}, \overline{d}, \overline{p} respectively.    
    We need a+ b+ c+ d\overline{a} + \overline{b} + \overline{c} + \overline{d}
    Also, p=a + b2=c + d2\overline{p} = \dfrac{\overline{a} + \overline{b}}{2} = \dfrac{\overline{c} + \overline{d}}{2}.........((\because diagonals bisect each other))
    So, the question needed becomes 4p =4OP 4\overline{p} = 4\overline{OP} 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now