Self Studies

Vector Algebra Test - 38

Result Self Studies

Vector Algebra Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$P, Q, R, S$$ have position vectors $$p, q, r, s$$, such that $$\displaystyle p-q=2\left ( s-r \right )$$, then
    Solution
    $$\overrightarrow { p } -\overrightarrow { q } =2\left( \overrightarrow { s } -\overrightarrow { r }  \right) \Rightarrow \overrightarrow { p } +2\overrightarrow { r } =2\overrightarrow { s } +\overrightarrow { q } =\overrightarrow { q } +2\overrightarrow { s } $$
    $$\displaystyle\Rightarrow \dfrac { \overrightarrow { p } +\overrightarrow { 2 } r }{ 1+2 } =\dfrac { \overrightarrow { q } +2\overrightarrow { s }  }{ 1+2 } $$
    $$\therefore $$ the point divides $$PR$$ in the ratio $$2:1$$, divides $$QS$$ in the ratio $$2:1$$.
    $$\therefore $$ $$PR$$ and $$QS$$ trisect each-other
  • Question 2
    1 / -0
    OABC is a tetrahedron express the vectors $$\displaystyle \overrightarrow{BC},\overrightarrow{CA},\:and\:\overrightarrow{AB}$$ in terms of the vectors $$\displaystyle \overrightarrow{OA},\overrightarrow{OB}\:and\:\overrightarrow{OC}$$
    Solution
    $$OABC$$ is a tetrahedron
    $$\displaystyle \overrightarrow{BC}=\overrightarrow{BO}+\overrightarrow{OC}=\overrightarrow{OC}-\overrightarrow{OB}$$
    $$\displaystyle\overrightarrow{CA}=\overrightarrow{CO}+\overrightarrow{OA}= \overrightarrow{OA}-\overrightarrow{OC}$$
    $$\displaystyle\overrightarrow{AB}=\overrightarrow{AO}+\overrightarrow{OB}= \overrightarrow{OB}-\overrightarrow{OA}$$
    Hence, option B.

  • Question 3
    1 / -0
    $$ABC$$ is any triangle and $$D, E, F$$ are the middle points of its sides $$BC, CA, AB$$ respectively. Express the vectors $$\displaystyle \overrightarrow{CF}$$ and $$\overrightarrow{BE}$$ as linear combination of the vectors $$\displaystyle \overrightarrow{AB}$$ and $$\overrightarrow{AC}$$
    Solution
    $$\overrightarrow { CA } +\overrightarrow { AF } =\overrightarrow { CF } $$
     $$\Rightarrow -\overrightarrow { AC } +\dfrac { 1 }{ 2 } \overrightarrow { AB } =\overrightarrow { CF } $$
     Similarly $$\overrightarrow { AE } +\overrightarrow { BA } =\overrightarrow { BE } $$
     $$\Rightarrow \dfrac { 1 }{ 2 } \overrightarrow { AC } -\overrightarrow { AB } =\overrightarrow { BE } $$

  • Question 4
    1 / -0
    If $$A\left( \overrightarrow { a }  \right) ,B( \overrightarrow { b } ) ,C\left( \overrightarrow { c }  \right) $$ be the vertices of a triangle whose circumcentre is the origin, then orthocenter is given by
    Solution
    $$A\left( \overrightarrow { a }  \right) ,B\left( \overrightarrow { b }  \right) ,C\left( \overrightarrow { c }  \right) $$ ate the vertices of the $$\triangle ABC$$.
    Circumcentre is at origin $$\displaystyle G\left( \overrightarrow { g }  \right) =\dfrac { \overrightarrow { a } +\overrightarrow { b } +\overrightarrow { c }  }{ 3 } $$
    $$\displaystyle G=\dfrac { 2\overrightarrow { c } +\overrightarrow { O }  }{ 3 } \Rightarrow \overrightarrow { O } =3\overrightarrow { G } $$
    $$\displaystyle \Rightarrow \overrightarrow { O } =3\left( \dfrac { \overrightarrow { a } +\overrightarrow { b } +\overrightarrow { c }  }{ 3 }  \right) =\overrightarrow { a } +\overrightarrow { b } +\overrightarrow { c } $$

  • Question 5
    1 / -0
    If a, b, c are position vectors of the vertices of a $$\displaystyle \Delta ABC,$$ then $$ \displaystyle \overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}=$$
    Solution
    If we join head to tail all the vectors, then we end up at the initial point where we started, that is vertice A.
    Hence the net sum is 0.
  • Question 6
    1 / -0
    Which of the following statements are correct:
    If in triangle OAC, B is the mid-point of AC and $$\displaystyle \overrightarrow{OA}= \vec{a}\:$$ and $$\:\overrightarrow{OB}= \vec{b}$$ then
    Solution
    $$B$$ is the midpoint of $$AC$$

    $$\Rightarrow \overrightarrow { OB } =\dfrac { \overrightarrow { OA } +\overrightarrow { OC }  }{ 2 } $$

    $$\therefore \overrightarrow { OC } =2\overrightarrow { OB } -\overrightarrow { OA } =2\overrightarrow { b } -\overrightarrow { a }$$

    Hence, option C.
  • Question 7
    1 / -0
    Given that the vectors $$\bar a,\bar b,\bar c$$ form a base, find the sum of  co-ordinates of the vector: $$3\bar u-\bar v+\bar w$$ 
    if $$\bar u=\bar a+\bar c, \bar v=\bar b+\bar c,\bar w=\bar a-\bar b$$;
    Solution
    Given vectors

    $$\bar{u} = \bar{a} + \bar{c}$$

    $$\bar{v} = \bar{b} + \bar{c}$$

    $$w = \bar{a} - \bar{b}$$

    $$3 \bar{u} - \bar{v} + \bar{w} = 3(a + c) - (b + c) + (a - b)$$

                         $$= 3a + 3c - b - c + a - b$$

                         $$= 4a - 2b + 2c$$.

    Sum of the co-ordinates of the vector

    $$= 4 + (-2) + 2 = 4 - 2 + 2 = 4$$.

    $$\therefore$$ The given option is correct.
  • Question 8
    1 / -0
    If c is the middle point of AB and P is any point outside AB then
    Solution
    $$\overrightarrow { AC } $$ and $$\overrightarrow { BC } $$
    have equal magnitude and opposite direction
    Therefore both are negative vectors of each other
    $$\therefore \overrightarrow { AC } +\overrightarrow { BC } =0$$
    In $$\triangle PAC$$ we have
    $$\overrightarrow { PA } +\overrightarrow { AC } =\overrightarrow { PC } $$   ...(1)
    In $$\triangle PBC$$, we have 
    $$\overrightarrow { PB } +\overrightarrow { BC } =\overrightarrow { PC } $$    ...(2)
    From (1) and (2)
    $$\overrightarrow { PA } +\overrightarrow { PB } +\left( \overrightarrow { AC } +\overrightarrow { BC }  \right) =2\overrightarrow { PC } \\ \Rightarrow \overrightarrow { PA } +\overrightarrow { PB } =2\overrightarrow { PC } $$

  • Question 9
    1 / -0
    ABCD is a parallelogram and AC, BD are its diagonals Express $$\displaystyle \overrightarrow{AC}\:and\:\overrightarrow{BD}$$ in terms of $$\displaystyle \overrightarrow{AB}\:and\:\overrightarrow{AD}$$ only
    Solution
    Given $$ABCD$$ is a parallelogram and $$AC, BD$$ are its diagonals.
    $$\displaystyle \overrightarrow{AC}= \overrightarrow{AB}+\overrightarrow{BC};\:\overrightarrow{BD}= \overrightarrow{BA}+\overrightarrow{AD}$$
    $$\displaystyle \overrightarrow{AC}= \overrightarrow{AB}+\overrightarrow{AD};\:\overrightarrow{BD}= -\overrightarrow{AB}+\overrightarrow{AD}$$
    Hence, option A.

  • Question 10
    1 / -0
    If $$\displaystyle \left ( \bar A+\bar B \right )$$ is perpendicular to$$\bar B$$ and If $$\displaystyle \left ( \bar A+2\bar B \right )$$ is perpendicular to $$\bar A$$, then
    Solution
    Given $$\displaystyle \left ( \bar A+\bar B \right )$$ is perpendicular to$$\bar B$$
    $$\Rightarrow \displaystyle \left ( \bar A+\bar B \right )\cdot \bar B=0$$
    $$\Rightarrow \bar A\cdot \bar B + B^2=0$$ -----(1)
    And $$\displaystyle \left ( \bar A+2\bar B \right )$$ is perpendicular to $$\bar A$$.
    $$\Rightarrow ( \bar A+2\bar B )\cdot \bar A=0$$
    $$\Rightarrow A^2+2\bar A\cdot \bar B=0$$ ------(2)
    from (1) and (2)
    $$A^2=2B^2$$
    $$\therefore A=\sqrt{2}B$$
    Hence, option A. 

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now