Self Studies

Vector Algebra ...

TIME LEFT -
  • Question 1
    1 / -0

    Given a cube $$ABCD{ A }_{ 1 }{ B }_{ 1 }{ C }_{ 1 }{ D }_{ 1 }$$ with lower base $$ABCD$$, upper base $${ A }_{ 1 }{ B }_{ 1 }{ C }_{ 1 }{ D }_{ 1 }$$ and the lateral edges $$A{ A }_{ 1 },B{ B }_{ 1 },C{ C }_{ 1 }$$ and $$D{ D }_{ 1 }$$; $$M$$ and $${ M }_{ 1 }$$ are the centers of the faces $$ABCD$$ and $${ A }_{ 1 }{ B }_{ 1 }{ C }_{ 1 }{ D }_{ 1 }$$ respectively. $$O$$ is apoint on line $$M{ M }_{ 1 }$$, such that
    $$OA+OB+OC+OD=O{ M }_{ 1 }$$, then $$OM=\lambda O{ M }_{ 1 }$$ is $$\lambda=$$

  • Question 2
    1 / -0

    If $$a$$ is perpendicular to $$b$$ and $$c$$, then

  • Question 3
    1 / -0

    The points $$O,A,B,C$$ are the vertices of a pyramid and $$P,Q,R,S$$ are the mid-points of $$OA,OB,BC,AC$$ respectively. If $$\displaystyle \overrightarrow{OA}=a,\overrightarrow{OB}=b,\overrightarrow{OC}=c,$$ express in terms of $$a, b, c$$ the vectors $$\displaystyle \overrightarrow{OP},\overrightarrow{OQ},\overrightarrow{OR}$$ and $$\displaystyle \overrightarrow{OS}$$/

  • Question 4
    1 / -0

    Given the vectors $$\bar a$$ and $$\bar b$$ as follows. Find the projections of $$\bar a$$ on $$\bar b$$ and of $$\bar b$$ on $$\bar a$$.
    $$\bar a=\hat i+\hat j+\hat k$$; $$\displaystyle \bar b= \sqrt{3}\hat i+3\hat j-2\hat k$$

  • Question 5
    1 / -0

    In a $$\triangle OAB$$, $$L$$ is a point on the side $$AB$$ and $$M$$ is a point on the side $$OB$$ and the lines $$OL$$ and $$AM$$ meet at $$S$$. It is given that $$AS=SM$$ and $$4 OS=3OL$$. and that $$\displaystyle \left (\frac{OM}{OB} \right )=h$$ and $$\displaystyle \left (\frac{AL}{AB} \right )=k.$$ Express the vectors $$\displaystyle \overrightarrow{AM},$$ and $$\displaystyle \overrightarrow{OS}$$ in term of $$a, b$$ and $$h$$ and the vectors $$\displaystyle \overrightarrow{OL}$$ and $$\displaystyle \overrightarrow{OS}$$ in terms of $$a,b$$ and $$k$$ where $$\displaystyle \overrightarrow{OA}=a$$ and $$\displaystyle \overrightarrow{OB}=b.$$ Find $$h$$ and $$k$$

  • Question 6
    1 / -0

    Given two vectors $$\displaystyle a=2i-3j+6k$$ on $$\displaystyle b=2i+3j-k$$ and $$\displaystyle \lambda =\frac{the\:projection\:of\:a\:on\:b}{the\:projection\:of\:b\:on\:a},$$ then the value of $$\displaystyle \lambda $$ is

  • Question 7
    1 / -0

    Directions For Questions

    ABC is a triangle and P,Q are the mid-points of AB, AC respectively. If $$\displaystyle \overrightarrow{AB}=2\vec a$$ and $$\displaystyle \overrightarrow{AC}=2\vec b$$.

    ...view full instructions

    $$\displaystyle \overrightarrow{BC}$$ 

  • Question 8
    1 / -0

    If $$\displaystyle \overrightarrow{PO}+\overrightarrow{OQ}=\overrightarrow{QO}+\overrightarrow{OR},$$ then $$\displaystyle P, Q, R$$ are

  • Question 9
    1 / -0

    Projection of the vector $$2i + 3j - 2k$$ on the vector $$i - 2j + 3k$$ is

  • Question 10
    1 / -0

    Directions For Questions

    $$ABCD$$ is parallelogram whose diagonals intersect at $$E$$ and $$M$$ is the mid-Point of $$DC$$. If$$\displaystyle \overrightarrow{AB}=\bar a$$ and $$\displaystyle \overrightarrow{AD}=\bar b,$$express in terms of $$\bar a$$ and $$\bar b$$ the vectors

    ...view full instructions

    $$\displaystyle \overrightarrow{AE}$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now