Self Studies

Vector Algebra Test - 39

Result Self Studies

Vector Algebra Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Given a cube $$ABCD{ A }_{ 1 }{ B }_{ 1 }{ C }_{ 1 }{ D }_{ 1 }$$ with lower base $$ABCD$$, upper base $${ A }_{ 1 }{ B }_{ 1 }{ C }_{ 1 }{ D }_{ 1 }$$ and the lateral edges $$A{ A }_{ 1 },B{ B }_{ 1 },C{ C }_{ 1 }$$ and $$D{ D }_{ 1 }$$; $$M$$ and $${ M }_{ 1 }$$ are the centers of the faces $$ABCD$$ and $${ A }_{ 1 }{ B }_{ 1 }{ C }_{ 1 }{ D }_{ 1 }$$ respectively. $$O$$ is apoint on line $$M{ M }_{ 1 }$$, such that
    $$OA+OB+OC+OD=O{ M }_{ 1 }$$, then $$OM=\lambda O{ M }_{ 1 }$$ is $$\lambda=$$
    Solution
    $$OM_1=OA+OB+OC+OD$$   (given)
    $$=OM+MA+OM+MB+OM+MC+OM+MD$$
    $$=4OM+(MA+MC)+(MB+MD)=4OM$$   $$(\because MA=-MC,MB=-MD)$$
    $$\displaystyle\therefore OM=\frac{1}{4}OM_1,$$
    $$\displaystyle \therefore \lambda=\frac{1}{4}$$
  • Question 2
    1 / -0
    If $$a$$ is perpendicular to $$b$$ and $$c$$, then
    Solution
    $$\overrightarrow { a } \times \left( \overrightarrow { b } \times \overrightarrow { c }  \right) =\left( \overrightarrow { a } \cdot \overrightarrow { c }  \right) \overrightarrow { b } -\left( \overrightarrow { a } \cdot \overrightarrow { b }  \right) \overrightarrow { c } =0-0=0\\ \left( \because \overrightarrow { a } \bot \overrightarrow { b } ,\overrightarrow { a } \bot \overrightarrow { c } ,\therefore \overrightarrow { a } \cdot \overrightarrow { b } =0,\overrightarrow { a } \cdot \overrightarrow { c } =0 \right) $$
  • Question 3
    1 / -0
    The points $$O,A,B,C$$ are the vertices of a pyramid and $$P,Q,R,S$$ are the mid-points of $$OA,OB,BC,AC$$ respectively. If $$\displaystyle \overrightarrow{OA}=a,\overrightarrow{OB}=b,\overrightarrow{OC}=c,$$ express in terms of $$a, b, c$$ the vectors $$\displaystyle \overrightarrow{OP},\overrightarrow{OQ},\overrightarrow{OR}$$ and $$\displaystyle \overrightarrow{OS}$$/
    Solution
    P,Q,R,S are the mid-points of OA,OB,BC,AC
    $$\overrightarrow { P } =\dfrac { \overrightarrow { A }-\vec{O}  }{ 2 } =\dfrac { \overrightarrow { a }  }{ 2 } $$
    $$\vec{OP}=\vec{P}-\vec{O}$$
    $$\vec{OP}=\dfrac{a}{2}-0$$
    $$\vec{OP}=\dfrac{a}{2}$$
    $$\overrightarrow { Q } =\dfrac { \overrightarrow { b }  }{ 2 } $$
    $$\vec{OQ}=\vec{Q}-\vec{O}$$
    $$\vec{OP}=\dfrac{b}{2}-0$$
    $$\vec{OP}=\dfrac{b}{2}$$

    $$\overrightarrow { R } =\dfrac { \overrightarrow { b } +\overrightarrow { c }  }{ 2 }$$
    $$\vec{OR}=\vec{R}-\vec{O}$$
    $$\vec{OR}=\dfrac{b+c}{2}-0$$
    $$\vec{OR}=\dfrac{b+c}{2}$$

    $$\overrightarrow { S } =\dfrac { \overrightarrow { a } +\overrightarrow { c }  }{ 2 }$$
    $$\vec{OS}=\vec{S}-\vec{O}$$
    $$\vec{OS}=\dfrac{a+c}{2}-0$$
    $$\vec{OS}=\dfrac{a+c}{2}$$

  • Question 4
    1 / -0
    Given the vectors $$\bar a$$ and $$\bar b$$ as follows. Find the projections of $$\bar a$$ on $$\bar b$$ and of $$\bar b$$ on $$\bar a$$.
    $$\bar a=\hat i+\hat j+\hat k$$; $$\displaystyle \bar b= \sqrt{3}\hat i+3\hat j-2\hat k$$
    Solution
    Given $$\bar a=\hat i+\hat j+\hat k$$; $$\displaystyle \bar b= \sqrt{3}\hat i+3\hat j-2\hat k$$
    Projection of $$\bar a$$ on $$\bar b$$ is
    $$\displaystyle\frac{\bar a \cdot \bar b}{|\bar b|}=\frac{\sqrt{3}+1}{4}$$
    Projection of $$\bar b$$ on $$\bar a$$ is
    $$\displaystyle\frac{\bar a \cdot \bar b}{|\bar a|}=\frac{\sqrt{3}+1}{\sqrt{3}}=\frac{3+\sqrt{3}}{3}$$
    Hence, option $$B$$.
  • Question 5
    1 / -0
    In a $$\triangle OAB$$, $$L$$ is a point on the side $$AB$$ and $$M$$ is a point on the side $$OB$$ and the lines $$OL$$ and $$AM$$ meet at $$S$$. It is given that $$AS=SM$$ and $$4 OS=3OL$$. and that $$\displaystyle \left (\frac{OM}{OB} \right )=h$$ and $$\displaystyle \left (\frac{AL}{AB} \right )=k.$$ Express the vectors $$\displaystyle \overrightarrow{AM},$$ and $$\displaystyle \overrightarrow{OS}$$ in term of $$a, b$$ and $$h$$ and the vectors $$\displaystyle \overrightarrow{OL}$$ and $$\displaystyle \overrightarrow{OS}$$ in terms of $$a,b$$ and $$k$$ where $$\displaystyle \overrightarrow{OA}=a$$ and $$\displaystyle \overrightarrow{OB}=b.$$ Find $$h$$ and $$k$$
    Solution
    Given 
    $$\vec{OA}=\vec{a},\vec{OC}=\vec{b}$$
    Let 
    $$(\dfrac{OM}{MB})=\dfrac{\lambda}{1}$$
    $$(\dfrac{AL}{LB})=\dfrac{\mu}{1}$$
    SO point M
    $$\vec{OM}=\dfrac{\lambda b}{\lambda+1}$$
    and point L
    $$\vec{OL}=\dfrac{\mu b+a}{\mu+1}$$

    Here $$AS=SM$$ i.e. S is mid point Of $$\vec{OA}$$ and $$\vec{OM}$$
    $$\vec{OS}=\dfrac{\vec{a}+\dfrac{\lambda b}{\lambda+1}}{2}$$
    $$\vec{OS}=\dfrac{\vec{a}(\lambda+1)+\lambda b}{2(\lambda +1)}$$
    $$\vec{OS}=\dfrac{\vec{a}\lambda +\vec{a}+\lambda \vec{b}}{2(\lambda +1)}$$--------(1)

    Here $$4OS=3OL$$ i.e $$\dfrac{OS}{SL}=\dfrac{3}{1}$$
    $$\vec{OS}=\dfrac{3\vec{OL}}{4}$$
    $$\vec{OS}=\dfrac{3\mu b+3a}{4(\mu+1)}$$-------(2)
    eq(1)=eq(2)
    $$\dfrac{\vec{a}\lambda +\vec{a}+\lambda \vec{b}}{2(\lambda +1)}=\dfrac{3\mu b+3a}{4(\mu+1)}$$
    $$\dfrac{\vec{a}\lambda +\vec{a}+\lambda \vec{b}}{(\lambda +1)}=\dfrac{3\mu b+3a}{2(\mu+1)}$$
    $$(\vec{a}\lambda +\vec{a}+\lambda \vec{b})(2(\mu+1))=(\lambda +1)(3\mu b+3a)$$
    $$2\mu\lambda\vec{a} +2\vec{a}\lambda+2\mu\vec{a}+2\vec{a}+2\mu\lambda\vec{b}+2\lambda\vec{b}=3\lambda\mu \vec{b}+3\mu \vec{b}+3\vec{a}\lambda+3\vec{a}$$
    $$(2\mu\lambda+2\lambda+2\mu+2)\vec{a}+(2\mu\lambda+2\lambda)\vec{b}=(3\lambda\mu+3\mu)\vec{b}+(3\lambda+3)\vec{a}$$
    comparing both sides w.r to a 
    $$2\mu\lambda+2\lambda+2\mu+2=3\lambda+3$$
    $$2\mu\lambda+2\mu=\lambda+1$$
    $$\mu=\dfrac{\lambda+1}{2\lambda+2}$$
    $$\mu=\dfrac{1}{2}$$
    and on comparing both sides w.r to b
    $$2\mu\lambda+2\lambda=3\mu\lambda+3\mu$$
    $$2\lambda=\mu\lambda+3\mu$$
    putting $$\mu$$ in above eq
    $$2\lambda=\dfrac{1}{2}\lambda+\dfrac{3}{2}$$
    $$2\lambda-\dfrac{1}{2}\lambda=\dfrac{3}{2}$$
    $$\dfrac{3}{2}\lambda=\dfrac{3}{2}$$
    $$\lambda=1$$

    $$h=(\dfrac{OM}{OB})=\dfrac{\lambda}{2}$$
    $$h=(\dfrac{OM}{OB})=\dfrac{1}{2}$$
    $$k=(\dfrac{AL}{AB})=\dfrac{AL}{AL+LB}$$
    $$k=(\dfrac{AL}{AB})=\dfrac{\mu}{\mu+1}$$
    $$k=(\dfrac{AL}{AB})=\dfrac{\dfrac{1}{2}}{\dfrac{1}{2}+1}$$
    $$k=\dfrac{\dfrac{1}{2}}{\dfrac{3}{2}}$$
    $$k=\dfrac{1}{3}$$

  • Question 6
    1 / -0
    Given two vectors $$\displaystyle a=2i-3j+6k$$ on $$\displaystyle b=2i+3j-k$$ and $$\displaystyle \lambda =\frac{the\:projection\:of\:a\:on\:b}{the\:projection\:of\:b\:on\:a},$$ then the value of $$\displaystyle \lambda $$ is
    Solution
    $$\displaystyle \lambda =\dfrac{the\:projection\:of\:a\:on\:b}{the\:projection\:of\:b\:on\:a},$$ 
    $$\displaystyle =\dfrac { \dfrac { a.b }{ \left| b \right|  }  }{ \dfrac { b.a }{ \left| a \right|  }  } =\dfrac { \left| a \right|  }{ \left| b \right|  } =\dfrac { 7 }{ 3 } $$
  • Question 7
    1 / -0

    Directions For Questions

    ABC is a triangle and P,Q are the mid-points of AB, AC respectively. If $$\displaystyle \overrightarrow{AB}=2\vec a$$ and $$\displaystyle \overrightarrow{AC}=2\vec b$$.

    ...view full instructions

    $$\displaystyle \overrightarrow{BC}$$ 
    Solution
    Given 
    $$\vec{AB}=2\vec{a}$$
    $$\vec{AC}=2\vec{b}$$
    by definition of position w.r.t origin O
    $$\vec{AB}=\vec{OB}-\vec{OA}$$
    $$2\vec{a}=\vec{OB}-\vec{OA}$$
    $$\vec{OB}=\vec{OA}+2\vec{a}$$----------(1)
    $$\vec{AC}=\vec{OC}-\vec{OA}$$
    $$2\vec{b}=\vec{OC}-\vec{OA}$$
    $$\vec{OC}=2\vec{b}+\vec{OA}$$-----------(2)
    $$\vec{BC}=\vec{OC}-\vec{OB}$$
    from eq (1) and (2)
    $$\vec{BC}=2\vec{b}+\vec{OA}-(\vec{OA}+2\vec{a})$$
    $$\vec{BC}=2\vec{b}+\vec{OA}-\vec{OA}-2\vec{a}$$
    $$\vec{BC}=2\vec{b}-2\vec{a}$$
    $$\vec{BC}=2(\vec{b}-\vec{a})$$
  • Question 8
    1 / -0
    If $$\displaystyle \overrightarrow{PO}+\overrightarrow{OQ}=\overrightarrow{QO}+\overrightarrow{OR},$$ then $$\displaystyle P, Q, R$$ are
    Solution
    $$\displaystyle \overrightarrow{PO}+\overrightarrow{OQ}=\overrightarrow{QO}+\overrightarrow{OR}$$
    $$\Rightarrow\displaystyle 2\overrightarrow{OQ}=\overrightarrow{OP}+\overrightarrow{OR}$$
    $$\Rightarrow \displaystyle\overrightarrow{OQ}=\dfrac{\overrightarrow{OP}+\overrightarrow{OR}}{2}$$
    $$\therefore P,Q,R$$ are collinear.
    Hence, option C.
  • Question 9
    1 / -0
    Projection of the vector $$2i + 3j - 2k$$ on the vector $$i - 2j + 3k$$ is
    Solution
    Projection of $$a$$ and $$b$$ is 
    $$\displaystyle \dfrac { a\cdot b }{ \left| b \right|  } =\dfrac { \left( 2i+3j-2k \right) \cdot \left( i-2j+3k \right)  }{ \left| i-2j+3k \right|  } =\dfrac { 2 }{ \sqrt { 14 }  } $$
  • Question 10
    1 / -0

    Directions For Questions

    $$ABCD$$ is parallelogram whose diagonals intersect at $$E$$ and $$M$$ is the mid-Point of $$DC$$. If$$\displaystyle \overrightarrow{AB}=\bar a$$ and $$\displaystyle \overrightarrow{AD}=\bar b,$$express in terms of $$\bar a$$ and $$\bar b$$ the vectors

    ...view full instructions

    $$\displaystyle \overrightarrow{AE}$$
    Solution
    Given $$ABCD$$ is a parallelogram in which  $$\overline{AB}=\bar a$$ and $$\overline{AD}=\bar b$$.
    And $$E$$ is point of intersection of diagonals.
    $$\overline{AE}=\displaystyle\frac{1}{2}\overline{AC}$$  As, diagonals bisect each other.
                  $$=\displaystyle\frac{1}{2}(\bar a+\bar b)$$
    $$\therefore \displaystyle \overrightarrow{AE}=\frac{1}{2}\left ( \bar a+\bar b \right )$$
    Hence, option A.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now