Given
$$\vec{OA}=\vec{a},\vec{OC}=\vec{b}$$
Let
$$(\dfrac{OM}{MB})=\dfrac{\lambda}{1}$$
$$(\dfrac{AL}{LB})=\dfrac{\mu}{1}$$
SO point M
$$\vec{OM}=\dfrac{\lambda b}{\lambda+1}$$
and point L
$$\vec{OL}=\dfrac{\mu b+a}{\mu+1}$$
Here $$AS=SM$$ i.e. S is mid point Of $$\vec{OA}$$ and $$\vec{OM}$$
$$\vec{OS}=\dfrac{\vec{a}+\dfrac{\lambda b}{\lambda+1}}{2}$$
$$\vec{OS}=\dfrac{\vec{a}(\lambda+1)+\lambda b}{2(\lambda +1)}$$
$$\vec{OS}=\dfrac{\vec{a}\lambda +\vec{a}+\lambda \vec{b}}{2(\lambda +1)}$$--------(1)
Here $$4OS=3OL$$ i.e $$\dfrac{OS}{SL}=\dfrac{3}{1}$$
$$\vec{OS}=\dfrac{3\vec{OL}}{4}$$
$$\vec{OS}=\dfrac{3\mu b+3a}{4(\mu+1)}$$-------(2)
eq(1)=eq(2)
$$\dfrac{\vec{a}\lambda +\vec{a}+\lambda \vec{b}}{2(\lambda +1)}=\dfrac{3\mu b+3a}{4(\mu+1)}$$
$$\dfrac{\vec{a}\lambda +\vec{a}+\lambda \vec{b}}{(\lambda +1)}=\dfrac{3\mu b+3a}{2(\mu+1)}$$
$$(\vec{a}\lambda +\vec{a}+\lambda \vec{b})(2(\mu+1))=(\lambda +1)(3\mu b+3a)$$
$$2\mu\lambda\vec{a} +2\vec{a}\lambda+2\mu\vec{a}+2\vec{a}+2\mu\lambda\vec{b}+2\lambda\vec{b}=3\lambda\mu \vec{b}+3\mu \vec{b}+3\vec{a}\lambda+3\vec{a}$$
$$(2\mu\lambda+2\lambda+2\mu+2)\vec{a}+(2\mu\lambda+2\lambda)\vec{b}=(3\lambda\mu+3\mu)\vec{b}+(3\lambda+3)\vec{a}$$
comparing both sides w.r to a
$$2\mu\lambda+2\lambda+2\mu+2=3\lambda+3$$
$$2\mu\lambda+2\mu=\lambda+1$$
$$\mu=\dfrac{\lambda+1}{2\lambda+2}$$
$$\mu=\dfrac{1}{2}$$
and on comparing both sides w.r to b
$$2\mu\lambda+2\lambda=3\mu\lambda+3\mu$$
$$2\lambda=\mu\lambda+3\mu$$
putting $$\mu$$ in above eq
$$2\lambda=\dfrac{1}{2}\lambda+\dfrac{3}{2}$$
$$2\lambda-\dfrac{1}{2}\lambda=\dfrac{3}{2}$$
$$\dfrac{3}{2}\lambda=\dfrac{3}{2}$$
$$\lambda=1$$
$$h=(\dfrac{OM}{OB})=\dfrac{\lambda}{2}$$
$$h=(\dfrac{OM}{OB})=\dfrac{1}{2}$$
$$k=(\dfrac{AL}{AB})=\dfrac{AL}{AL+LB}$$
$$k=(\dfrac{AL}{AB})=\dfrac{\mu}{\mu+1}$$
$$k=(\dfrac{AL}{AB})=\dfrac{\dfrac{1}{2}}{\dfrac{1}{2}+1}$$
$$k=\dfrac{\dfrac{1}{2}}{\dfrac{3}{2}}$$
$$k=\dfrac{1}{3}$$