Self Studies

Vector Algebra ...

TIME LEFT -
  • Question 1
    1 / -0

    If $$\vec{a}, \vec{b}, \vec{c}$$ are three non-coplanar vectors such that $$\vec{d}\cdot \vec{a}=\vec{d}\cdot \vec{b}=\vec{d}\cdot \vec{c}=0$$, then $$\vec{d}$$ is :-

  • Question 2
    1 / -0

    If $$\overline {OA}=i+j+k, \overline {AB}=3i-2j+k,\overline {BC}=i+2j-2k$$ and $$\overline {CD}=2i+j+3k $$ then find the vector $$\overline{OD}$$.

  • Question 3
    1 / -0

    The value of $$\bar {a} \times (\bar {b}+\bar {c})+\bar {b}\times (\bar {c}+\bar {a})+\bar {c}\times (\bar {a}+\bar {b})=$$

  • Question 4
    1 / -0

    Let $$\vec{a},\vec{b}$$ and $$\vec{c}$$ be three non-zero vectors such that no two of these are collinear. If the vector $$\vec{a}+2\vec{b}$$ is collinear with $$\vec{c}$$ and $$\vec{b}+3\vec{c}$$ is collinear with $$\vec{a}(\lambda$$ being some non-zero scalar), then $$\vec{a}+2\vec{ b}+6\vec{c}$$ equals

  • Question 5
    1 / -0

    The $$P.V.'s$$ of the vertices of a $$\triangle ABC$$ are $$\bar {i}+\bar {j}+\bar {k}, 4\bar {i}+\bar {j}+\bar {k}, 4\bar {i}+5\bar {j}+\bar {k}$$. The $$P.V.$$ of the circumcentre of $$\triangle ABC$$ is

  • Question 6
    1 / -0

    Component of $$\vec{a}=\hat{i}-\hat{j}-\hat{k}$$ perpendicular to the vector $$\vec{b}=2\hat{i}+\hat{j}-\hat{k}$$ is?

  • Question 7
    1 / -0

    If $$a^b=b^c=ab$$, then $$b+c$$ always equals?

  • Question 8
    1 / -0

    $$\overline a  = \overline i  - \overline k ,\overline b  = x\overline i  + \overline j  + (1 - x)\overline k $$ and $$\overline c  = y\overline i  + \lambda \overline j  + (1 + x - y)\overline k $$ then $$\left[ {\overline a \overline b \overline c } \right]$$ depends on:-

  • Question 9
    1 / -0

    $$A(1, -1, -3)$$, $$B(2, 1, -2)$$ & $$C(-5, 2, -6)$$ are the position vectors of the vertices of a triangle ABC. The length of the bisector of its internal angle at A is?

  • Question 10
    1 / -0

    Let P, Q, R and S be the points on the plane with position vectors $$-2\hat{i}-\hat{j}, 4\hat{i}, 3\hat{i}+3\hat{j}$$ and $$-3\hat{i}+2\hat{j}$$ respectively. the quadrilateral PQRS must be a.

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now