Self Studies

Vector Algebra Test - 52

Result Self Studies

Vector Algebra Test - 52
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\vec{a}, \vec{b}, \vec{c}$$ are three non-coplanar vectors such that $$\vec{d}\cdot \vec{a}=\vec{d}\cdot \vec{b}=\vec{d}\cdot \vec{c}=0$$, then $$\vec{d}$$ is :-
    Solution
    $$\because \overline { a } ,\overline { b }\  and\quad \overline { c } $$ are not coplanar vectors.
     Hence,$$\overline { d } $$ can't be perpendicular to $$\overline { a } ,\overline { b }\    and\quad \overline { c } $$ at the same time.
    $$ \therefore$$ The only way for $$\overline {d} .\overline{a} = 0,\  \overline { d } .\overline { b } =0$$ and $$\overline { d } .\overline { c } =0$$ to be true is if $$\overline { d } $$ is a null vector.
    $$ \therefore B)Ans.$$
  • Question 2
    1 / -0
    If $$\overline {OA}=i+j+k, \overline {AB}=3i-2j+k,\overline {BC}=i+2j-2k$$ and $$\overline {CD}=2i+j+3k $$ then find the vector $$\overline{OD}$$.
    Solution
    $$\overrightarrow {AB}  = 3\hat i - 2\hat j + \hat k$$
    $$ \Rightarrow \overrightarrow {OB}  - \overrightarrow {OA}  = 3i - 2\hat j + \hat k$$
    $$ \Rightarrow \overrightarrow {OB}  = 3i - 2\hat j + \hat k + \overrightarrow {OA} $$
    $$ \Rightarrow \overrightarrow {OB}  = 3i - 2\hat j + \hat k + \left( {\hat i + \hat j + \hat k} \right)$$
    $$ \Rightarrow \overrightarrow {OB}  = 4\hat i - \hat j + 2\hat k$$
    Now, 
    $$\overrightarrow {BC}  = \overrightarrow {OC}  - \overrightarrow {OB} $$
    $$ \Rightarrow \overrightarrow {OC}  = \overrightarrow {BC}  + \overrightarrow {OB} $$
    $$ \Rightarrow \overrightarrow {OC}  = \left( {i + 2j - 2k} \right) + \left( {4\hat i - \hat j + 2\hat k} \right)$$
    $$ \Rightarrow \overrightarrow {OC}  = 5\hat i + \hat j$$
    similarly, $$\overrightarrow {CD}  = \overrightarrow {OD}  - \overrightarrow {OC} $$
    $$ \Rightarrow \overrightarrow {OD}  = \overrightarrow {CD}  + \overrightarrow {OC} $$
    $$ \Rightarrow \overrightarrow {OD}  = \left( {2\hat i + \hat j + 3\hat k} \right) + \left( {5\hat i + \hat j} \right)$$
    $$ \Rightarrow \overrightarrow {OD}  = 7\hat i + 2\hat j + 3\hat k$$
  • Question 3
    1 / -0
    The value of $$\bar {a} \times (\bar {b}+\bar {c})+\bar {b}\times (\bar {c}+\bar {a})+\bar {c}\times (\bar {a}+\bar {b})=$$
    Solution
    $$\bar {a} \times (\bar{b} + \bar{c}) + \bar{b} \times (\bar{c} + \bar{a}) + \bar{c} \times (\bar{a} + \bar{b})$$

    $$ = \bar {a} \times \bar{b} + \bar{a} \times \bar{c} + \bar{b} \times \bar{c} + \bar{b} \times \bar{a} + \bar{c} \times \bar{a} + \bar{c} \times \bar{b}$$

    $$ = \bar {a} \times \bar{b} + \bar{a} \times \bar{c} + \bar{b} \times \bar{c} - \bar{a} \times \bar{b} - \bar{a} \times \bar{c} - \bar{b} \times \bar{c}$$

    $$ = 0 $$(Option A)

    Formula:
    $$\bar {b} \times \bar {a} = - \bar{a} \times \bar{b}$$
  • Question 4
    1 / -0
    Let $$\vec{a},\vec{b}$$ and $$\vec{c}$$ be three non-zero vectors such that no two of these are collinear. If the vector $$\vec{a}+2\vec{b}$$ is collinear with $$\vec{c}$$ and $$\vec{b}+3\vec{c}$$ is collinear with $$\vec{a}(\lambda$$ being some non-zero scalar), then $$\vec{a}+2\vec{ b}+6\vec{c}$$ equals
    Solution
    $$\vec { a } +2\vec { b } =\lambda\vec { c } \quad -(i)$$
    $$ \vec { b } +3\vec { c } =\mu\vec { a } \quad -(ii)$$
    $$ Substituting\quad \vec { a } \quad from\quad (i)\quad in\quad (ii)$$
    $$\implies\quad \vec { b } +3\vec { c } =\mu(\lambda\vec { c } -2\vec { b } )$$
    $$\implies\quad (1+2\mu)\vec { b } =(\lambda\mu-3)\vec { c } $$
    $$\implies\quad But\quad since\quad \vec { b } \quad and\quad \vec { c } \quad are\quad not\quad collinear.$$
    $$\implies\quad Either\quad 1+2\mu=0,\quad \lambda\mu-3=0$$
    $$\implies\quad \mu=\cfrac { -1 }{ 2 } $$
    $$ and\quad \cfrac { -\lambda}{ 2 } =3$$
    $$\implies\quad \lambda=-6$$

    $$ Substituting\quad in\quad (i)$$
    $$\implies\quad \vec { a } +2\vec { b } +6\vec { c } =\vec { 0 } $$

    $$ \therefore D)Answer.$$

  • Question 5
    1 / -0
    The $$P.V.'s$$ of the vertices of a $$\triangle ABC$$ are $$\bar {i}+\bar {j}+\bar {k}, 4\bar {i}+\bar {j}+\bar {k}, 4\bar {i}+5\bar {j}+\bar {k}$$. The $$P.V.$$ of the circumcentre of $$\triangle ABC$$ is
    Solution
    We have,
    $$A(1,1,1)$$    $$B(4,1,1)$$      $$C(4,5,1)$$
    $$AB=3$$       $$BC=4$$         $$CA=5$$
    Hence,
    Triangle is right angle at $$B$$.
    $$\therefore $$ CIrcumcentre is mid point of $$AC = \left( {\frac{5}{2},3,1} \right)$$ 
    $$ = \left( {\frac{5}{2}\overline i ,3\overline j ,\overline k } \right)$$
    Then,
    Option $$A$$ is correct answer.
  • Question 6
    1 / -0
    Component of $$\vec{a}=\hat{i}-\hat{j}-\hat{k}$$ perpendicular to the vector $$\vec{b}=2\hat{i}+\hat{j}-\hat{k}$$ is?
    Solution
    $$\bar{a}=\hat{i}-\hat{j}-\hat{k}$$
    $$\bar{b}=2\hat{i}+\hat{j}-\hat{k}$$
    $$a_{\bot}=a-\dfrac{a.b}{b.b}(\bar{b})$$
    $$a_{\bot}=(\hat{i}-\hat{j}-\hat{k})-\dfrac{(\hat{i}-\hat{j}-\hat{k}).(2\hat{i}+\hat{j}-\hat{k})}{(\sqrt{(2)^{2}+(1)^{2}+(1)^{2}})^{2}} (2\hat{i}+\hat{j}-\hat{k})$$
    $$a_{\bot}=(\hat{i}-\hat{j}-\hat{k})-\dfrac{(2-1+1)}{6}(2\hat{i}+\hat{j}-\hat{k})$$
    $$a_{\bot}=(\hat{i}-\hat{j}-\hat{k})-\dfrac{(2\hat{i}+\hat{j}-\hat{k})}{3}$$
    $$a_{\bot}=\dfrac{(3\hat{i}-2\hat{i})-(3\hat{j}+\hat{j})-(3\hat{k}-\hat{k})}{3}$$
    $$a_{\bot}=\dfrac{\hat{i}-4\hat{j}-2\hat{k}}{3}=\dfrac{1}{3}(\hat{i}-4\hat{j}-2\hat{k})$$
  • Question 7
    1 / -0
    If $$a^b=b^c=ab$$, then $$b+c$$ always equals?
    Solution
    $${ a }^{ b }={ b }^{ c }=ab=p(let)$$
    $$\implies\quad { a }^{ b }=p$$
    taking log
    $$\implies\quad b\log { a } =\log { p } \quad -(i)$$
    $$ { b }^{ c }=p$$
    Taking log
    $$\implies\quad c\log { b } =\log { p } \quad -(ii)$$
    $$ ab=p$$
    Taking log
    $$ \log { a } +\log { b } =\log { p } $$
    Using$$ (i)\& (ii),$$we can say:
    $$ \cfrac { \log { p }  }{ b } +\cfrac { \log { p }  }{ c } =\log { p } $$
    $$\implies\quad \cfrac { 1 }{ b } +\cfrac { 1 }{ c } =1$$
    $$\implies\quad b+c=bc$$
  • Question 8
    1 / -0
    $$\overline a  = \overline i  - \overline k ,\overline b  = x\overline i  + \overline j  + (1 - x)\overline k $$ and $$\overline c  = y\overline i  + \lambda \overline j  + (1 + x - y)\overline k $$ then $$\left[ {\overline a \overline b \overline c } \right]$$ depends on:-
    Solution
    $$\textbf{Step1-Find scalar triple product of vcectors}$$
                  $$\overline { a } .[\overline { b } \times \overline { c } ]$$
                  $$ \left| \begin{matrix} 1 & 0 & -1 \\ x & 1 & 1-x \\ y & \lambda  & 1+x-y \end{matrix} \right| $$
                  $$\implies\quad 1(1+x-y-\lambda +\lambda x)-1(\lambda x-y)$$
                  $$\implies\quad 1+x-y-\lambda +\lambda x-\lambda x+y$$
                  $$ \therefore [\begin{matrix} a & b & c \end{matrix}]$$ $$\text{depends only on x,not y.}$$
    $$\textbf{Hence , option C is correct}$$
  • Question 9
    1 / -0
    $$A(1, -1, -3)$$, $$B(2, 1, -2)$$ & $$C(-5, 2, -6)$$ are the position vectors of the vertices of a triangle ABC. The length of the bisector of its internal angle at A is?
    Solution
    $$AB=\sqrt { { (2-1) }^{ 2 }+{ (1+1) }^{ 2 }+{ (-2+3) }^{ 2 } } $$
    $$ =\sqrt { 1+4+1 } $$
    $$ =\sqrt { 6 } $$
    $$ AC=\sqrt { { (-5-1) }^{ 2 }+{ (2+1) }^{ 2 }+{ (-6+3) }^{ 2 } } $$
    $$ =\sqrt { 36+9+9 } $$
    $$=\sqrt { 54 } $$
    $$ =3\sqrt { 6 } $$
    $$ \cfrac { AB }{ AC } =\cfrac { BE }{ EC } (\because \triangle AEB\sim \triangle AEC\quad \therefore \angle BAE=\angle EAC)$$
    $$\implies\quad \cfrac { BE }{ EC } =\cfrac { AB }{ AC } =\cfrac { \sqrt { 6 }  }{ 3\sqrt { 6 }  } =\cfrac { 1 }{ 3 } $$
     Using section formula,
    $$ E=(\cfrac { -5+2(3) }{ 1+3 } ,\cfrac { 2+3(1) }{ 1+3 } ,\cfrac { -6+3(-2) }{ 4 } )$$
    $$\implies\quad E=(\cfrac { -5+6 }{ 4 } ,\cfrac { 2+3 }{ 4 } ,\cfrac { -6-6 }{ 4 } )$$
    $$ =(\cfrac { 1 }{ 4 } ,\cfrac { 5 }{ 4 } ,{ -3 })$$
    $$ \therefore Length\quad AE=\sqrt { { (1-\cfrac { 1 }{ 4 } ) }^{ 2 }+{ (-1-\cfrac { 5 }{ 4 } ) }^{ 2 }+{ (-3+3) }^{ 2 } } $$
    $$ =\sqrt { \cfrac { 9 }{ 16 } +\cfrac { 81 }{ 16 } +0 } $$
    $$ =\sqrt { \cfrac { 90 }{ 16 }  } $$
    $$ =\sqrt { \cfrac { 9\times 10 }{ 16 }  } $$
    $$ =\cfrac { 3\sqrt { 10 }  }{ 4 } $$

  • Question 10
    1 / -0
    Let P, Q, R and S be the points on the plane with position vectors $$-2\hat{i}-\hat{j}, 4\hat{i}, 3\hat{i}+3\hat{j}$$ and $$-3\hat{i}+2\hat{j}$$ respectively. the quadrilateral PQRS must be a.
    Solution
    Consider the problem 
    As we given 
    $$\left( { - 2\hat i - \hat j} \right),\left( {4\hat i} \right),\left( {3\hat i + 3\hat j} \right),\left( { - 3i + 2\hat j} \right)$$
    On converting above vectors into Cartesian coordinates
    Then , consider,
    $$P\left( { - 2, - 1} \right),Q\left( {4,0} \right),R\left( {3,3} \right),S\left( { - 3,2} \right)$$
    By distance formula 

    $$=\sqrt{(x_1-x_2)^2+(y_1+y_2)^2}$$

    $$d(PQ)=\sqrt{(4+2)^2+(0+1)^2}=\sqrt{37}$$
    Similarly,

    $$d(QR)=\sqrt{10}$$

    $$d(RS)={\sqrt{37}}$$

    $$d(SP)=\sqrt{10}$$

    Therefore,
    $$d(PQ)=d(RS)$$ and $$d(QR)=d(SP)$$
    Hence, 
    $$PQRS$$ is parallelogram 
    Now, 
    Slope $$=\frac{y_2-y_1}{x_2-x_1}$$
    Therefore, let slope is $$S$$ 
    then ,
    $$S(PQ)=\frac{0-(-1)}{4-(-2)}=\frac{0+1}{4+2}=\frac{1}{6}$$
    Similarly,
    $$S(QR)=\frac{3}{-1}=-3$$

    $$S(RS)=\frac{-1}{-6}=\frac{1}{6}$$

    $$S(PS)=-3$$

    $$S(PQ)=S(RS)$$ this implies $$PQ \parallel RS$$
    And 
    $$S(QR)=S(SP)$$ this implies $$QR \parallel SP$$

    $$S(PQ) \ne S(QR)$$   i.e. they aren't parallel 

    $$S(PQ) \times S(QR) \ne -1$$ i.e. they aren't perpendicular.

    Therefore 

    $$PQRS$$ is a parallelogram but it is nor a rhombus and not rectangle.

    Hence option $$A$$ is the correct answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now