Self Studies

Vector Algebra ...

TIME LEFT -
  • Question 1
    1 / -0

    Let $$\overrightarrow{a},\overrightarrow{b}$$ be the position vectors of points $$A$$ and $$B$$ with respect to $$O$$ and $$\left|\overrightarrow{a}\right|=a,\left|\overrightarrow{b}\right|=b$$ the points $$C$$ and $$D$$ divides $$A$$ internally and externally in the ratio $$2:3$$ If $$\overrightarrow{OC}$$ and $$\overrightarrow{OD}$$ are perpendicular then

  • Question 2
    1 / -0

    If $$\vec{a}+\vec{b}+\vec{c}=vec{0}$$ then $$\vec{a}\times \vec{b}=?$$

  • Question 3
    1 / -0

    The ratio in which $$i+2j+3k$$ divides the join of $$-2i+3j+5k$$ and $$7i-k$$ is?

  • Question 4
    1 / -0

    Let $$\left| \overline { a } +\overline { b }  \right| =\left| \overline { a } -\overline { b }  \right| $$. If $$\left| \overline { a } \times \overline { b }  \right| =\lambda \left| \overline { a }  \right| $$, then $$\lambda=$$

  • Question 5
    1 / -0

    Let $$A,B,C$$ be distinct point with position vectors $$\hat{i}+\hat{j}$$, $$\hat{i}-\hat{j}$$, $$p\hat{i}-q\hat{j}+r\hat{k}$$ respectively. Points $$A,B,C$$ are collinear, then which of the following can be correct:

  • Question 6
    1 / -0

    The projection of the vector $$\hat{i}-2\hat{j}+\hat{k}$$ on he vector $$4\hat{i}-4\hat{j}+7\hat{k}$$ is equal to:

  • Question 7
    1 / -0

    If $$\left|\overrightarrow{a} \right|=1$$, the projection of $$\overrightarrow{r}$$ along $$\overrightarrow{a} $$ is $$2$$ and $$\overrightarrow{a}\times \overrightarrow{r}+\overrightarrow{b}=\overrightarrow{r}$$, then $$\overrightarrow{r}=$$

  • Question 8
    1 / -0

    If $$\overrightarrow{u}, \overrightarrow{v}$$ and $$\overrightarrow{w}$$ are three non-coplanar vectors, then $$(\overrightarrow{u} + \overrightarrow{v} - \overrightarrow{w}). (\overrightarrow{u} - \overrightarrow{v}) \times (\overrightarrow{v} - \overrightarrow{w})$$ equals

  • Question 9
    1 / -0

    If $$\overrightarrow{a}\times \overrightarrow{b}=\overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{c}\times \overrightarrow{a}\neq 0$$ then $$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=$$

  • Question 10
    1 / -0

    A unit vector perpendicular to the plane of the triangle ABC with the position vectors  $$\vec a\,\,\,\,\vec b\,\,\vec c$$ of the vectors A,B,C, is 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now