Self Studies

Vector Algebra ...

TIME LEFT -
  • Question 1
    1 / -0

    If $$\vec {a}$$ and $$\vec {b}$$  are in the plane which is perpendicular to the plane containing $$\vec {c}$$ and $$\vec {d}$$ then $$(\vec {a} \times \vec {b})\times (\vec {c} \times \vec {d})$$ is

  • Question 2
    1 / -0

    If $$\overrightarrow { a } =2\hat { i } +\hat { j } +\hat { k } ,\overrightarrow { b } =3\hat { i } -4\hat { j } +2\hat { k } ,\overrightarrow { c } =\hat { i } -2\hat { j } +2\hat { k } $$ then the projection of $$\overrightarrow { a } +\overrightarrow { b } $$ on $$\overrightarrow { c } $$ is

  • Question 3
    1 / -0

    If $$A(6,3,2),B(5,1,4),C(3,-4,7), D(0,2,5)$$ are four points, then projection of $$CD$$ on $$AB$$ is

  • Question 4
    1 / -0

    If $$\vec a,\vec b$$ and $${\vec c}$$ are unit vectors, then $${\left| {\vec a + \vec b} \right|^2} + {\left| {\vec b - \vec c} \right|^2} + {\left| {\vec c - \vec a} \right|^2}$$ does NOT exceed 

  • Question 5
    1 / -0

    If $$\left| {\vec a} \right| = 2,\left| {\vec b} \right| = 3$$ and  $$\left| {2\vec a - \vec b} \right| = 5,$$ then  $$\left| {2\vec a + \vec b} \right|$$ equals:

  • Question 6
    1 / -0

    If the vectors $$\overrightarrow { a } =\hat { i } -\hat { j } +2\hat { k } ;\overrightarrow { b } =2\hat { i } +4\hat { j } +\hat { k } ;\overrightarrow { c } =\lambda \hat { i } +\hat { j } +\mu \hat { k } $$ are mutually orthogonal, then $$(\lambda,\mu)=$$

  • Question 7
    1 / -0

    If $$\left| \overrightarrow { a }  \right| =3,\left| \overrightarrow { b }  \right| =4$$, if $$\left( \overrightarrow { a } +\lambda \overrightarrow { b }  \right) $$ is perpendicular to $$\left( \overrightarrow { a } -\lambda \overrightarrow { b }  \right) $$ then $$\lambda =$$

  • Question 8
    1 / -0

    The projection of the vector $$2\hat i + \hat j - 3\hat k$$ on  the vector $$\hat i - 2\hat j - \hat k$$

  • Question 9
    1 / -0

    The position vectors of the points A,B,C are $$\overline { i } + 2 \overline { j } - \overline { k } , \overline { i } + \overline { j } + \overline { k } , 2 \overline { i } + 3 \overline { j } + 2 \overline { k }$$ respectively. If A is chosen as the origin then the position vectors of B and C are 

  • Question 10
    1 / -0

    If $$|a|=5.|\vec{b}|=4$$, and $$|c|=3$$. then what will be the value of $$\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}$$ given that $$\vec{a}+\vec{b}+\vec{c}=0$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now