We have
$$\left| {\overrightarrow a } \right| = 2\,\,\,\,\,\left| {\overrightarrow b } \right| = 3\,\,\,$$
And, $$\left| {2\overrightarrow a - \overrightarrow b } \right| = 5$$
We have to find the value of $$\left| {2\overrightarrow a + \overrightarrow b } \right| $$
Now
$$\left| {2\overrightarrow a - \overrightarrow b } \right|.\left| {2\overrightarrow a - \overrightarrow b } \right| = 25$$
$$4{\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} - 4\overrightarrow a .\overrightarrow b = 25$$
$$25 - 4\overrightarrow a .\overrightarrow b = 25$$
$$\therefore \overrightarrow a .\overrightarrow b = 0$$
Then for $$\overrightarrow a \bot \overrightarrow b $$
$${\left| {2\overrightarrow a + \overrightarrow b } \right|^2} = \left( {2\overrightarrow a + \overrightarrow b } \right).\left( {2\overrightarrow a + \overrightarrow b } \right)$$
$$ = 4{\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 4\overrightarrow a .\overrightarrow b $$
$$ = 4 \times 4 + 9 = 25$$
$$\therefore \left| {2\overrightarrow a + \overrightarrow b } \right| = 5$$
Hence, the option $$C$$ is the correct answer.