Self Studies

Vector Algebra Test - 58

Result Self Studies

Vector Algebra Test - 58
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\vec {a}$$ and $$\vec {b}$$  are in the plane which is perpendicular to the plane containing $$\vec {c}$$ and $$\vec {d}$$ then $$(\vec {a} \times \vec {b})\times (\vec {c} \times \vec {d})$$ is
    Solution
    $$\left( \vec { a } \times \vec { b }  \right) $$ is a plane $$\bot $$ to both $$\vec { a } $$ and $$\vec { b } $$
    $$\left( \vec { c } \times \vec { d }  \right) $$ is a plane $$\bot$$ to both $$\vec { c } $$ and $$\vec { d } $$
    Now $$\vec { a } $$ and $$\vec { b } $$ are in plane which is perpendicular to plane $$\vec { c } $$ and $$\vec { d } $$
    $$\therefore$$ $$\vec { a } \times \vec { b } $$ is in with zero degree with $$\vec { c } \times \vec { d } $$
    $$\therefore$$ $$\left( \vec { a } \times \vec { b }  \right) \times \left( \vec { c } \times \vec { d }  \right) =0$$
  • Question 2
    1 / -0
    If $$\overrightarrow { a } =2\hat { i } +\hat { j } +\hat { k } ,\overrightarrow { b } =3\hat { i } -4\hat { j } +2\hat { k } ,\overrightarrow { c } =\hat { i } -2\hat { j } +2\hat { k } $$ then the projection of $$\overrightarrow { a } +\overrightarrow { b } $$ on $$\overrightarrow { c } $$ is
    Solution
    $$\vec{a}+\vec{b}=5\hat{i}-3\hat{j}+3\hat{k}$$
    Projection of $$\vec{a}+\vec{b}$$ on $$\vec{c}$$ is $$\dfrac{(\vec{a}+\vec{b}).\vec{c}}{|\vec{c}|}$$
    $$\dfrac{5+6+6}{\sqrt{1+4+4}}=\dfrac{17}{3}$$
  • Question 3
    1 / -0
    If $$A(6,3,2),B(5,1,4),C(3,-4,7), D(0,2,5)$$ are four points, then projection of $$CD$$ on $$AB$$ is
  • Question 4
    1 / -0
    If $$\vec a,\vec b$$ and $${\vec c}$$ are unit vectors, then $${\left| {\vec a + \vec b} \right|^2} + {\left| {\vec b - \vec c} \right|^2} + {\left| {\vec c - \vec a} \right|^2}$$ does NOT exceed 
    Solution
    Given $$\bar {a}, \bar {b} $$ and $$\bar {c}$$ are unit vector 
    we need maximum value, so :-

    Let $$\bar {a}= \hat {i} \bar {b}= \hat {j} $$ and $$ \bar {c} = \hat {k}$$
    $$|\bar {a}+ \bar {b}|^{2}+ |\bar {b}-\bar {c}|^{2}+ |\bar {c}-\bar {a}|^{2}$$

    $$|\hat{i}+ \hat{j}|^{2}+ |\hat{j}- \hat{k}|^{2}+ |\hat{k}- \hat{i}|^{2}$$
    $$(\sqrt{1^{2}+1^{2}})^{2}+ (\sqrt{1^{2}+1^{2}})^{2}+ (\sqrt{1^{2}+1^{2}})^{2}$$

    $$\Rightarrow 2+2+2=6$$
    $$\therefore 6$$ is the maximum value.

     $$\therefore |\bar {a}+ \bar {b}|+ |\bar {b} - \bar {c}| + |\bar {c}- \bar {a}|^{2}$$ does not exceed $$6$$
  • Question 5
    1 / -0
    If $$\left| {\vec a} \right| = 2,\left| {\vec b} \right| = 3$$ and  $$\left| {2\vec a - \vec b} \right| = 5,$$ then  $$\left| {2\vec a + \vec b} \right|$$ equals:
    Solution
    We have
    $$\left| {\overrightarrow a } \right| = 2\,\,\,\,\,\left| {\overrightarrow b } \right| = 3\,\,\,$$
    And, $$\left| {2\overrightarrow a  - \overrightarrow b } \right| = 5$$
    We have to find the value of $$\left| {2\overrightarrow a  + \overrightarrow b } \right| $$
    Now
    $$\left| {2\overrightarrow a  - \overrightarrow b } \right|.\left| {2\overrightarrow a  - \overrightarrow b } \right| = 25$$
    $$4{\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} - 4\overrightarrow a .\overrightarrow b  = 25$$
    $$25 - 4\overrightarrow a .\overrightarrow b  = 25$$
    $$\therefore \overrightarrow a .\overrightarrow b  = 0$$
    Then for $$\overrightarrow a  \bot \overrightarrow b $$
    $${\left| {2\overrightarrow a  + \overrightarrow b } \right|^2} = \left( {2\overrightarrow a  + \overrightarrow b } \right).\left( {2\overrightarrow a  + \overrightarrow b } \right)$$
    $$ = 4{\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 4\overrightarrow a .\overrightarrow b $$
    $$ = 4 \times 4 + 9 = 25$$

    $$\therefore \left| {2\overrightarrow a  + \overrightarrow b } \right| = 5$$
    Hence, the option $$C$$ is the correct answer.
  • Question 6
    1 / -0
    If the vectors $$\overrightarrow { a } =\hat { i } -\hat { j } +2\hat { k } ;\overrightarrow { b } =2\hat { i } +4\hat { j } +\hat { k } ;\overrightarrow { c } =\lambda \hat { i } +\hat { j } +\mu \hat { k } $$ are mutually orthogonal, then $$(\lambda,\mu)=$$
    Solution
    Given $$ \vec{a} = \hat{i}-\hat{j}+2\hat{k}$$
    $$ \vec{b} = 2\hat{i}+4\hat{j}+\hat{k}$$
    $$ \vec{c} = \lambda \hat{i}+\hat{j}+\mu \hat{k}$$
    since, vector's are mutually orthogonal
    $$ \therefore \vec{a}.\vec{b} = 0, \vec{b}.\vec{c} = 0, \vec{c}.\vec{a} = 0 $$
    $$ \vec{b}.\vec{c} = 0$$
    $$ 2\lambda +4+\mu  = 0$$ __ (1)
    $$ \vec{c}.\vec{a} = 0$$
    $$ \lambda -1 +2\mu  = 0$$ __ (II)
    $$ (1)\times 2$$   
    $$ 4\lambda +8+2\mu  = 0$$
    $$ \lambda -1+2\mu  = 0$$
    ____________ 
    $$ 3\lambda +9 = 0$$
    $$ \Rightarrow \lambda  = -3$$
    $$ -3-1+2\mu = 0$$
    $$ \Rightarrow \mu  = 2 $$
    Hence, $$ (\lambda ,\mu ) =(-3,2)$$

  • Question 7
    1 / -0
    If $$\left| \overrightarrow { a }  \right| =3,\left| \overrightarrow { b }  \right| =4$$, if $$\left( \overrightarrow { a } +\lambda \overrightarrow { b }  \right) $$ is perpendicular to $$\left( \overrightarrow { a } -\lambda \overrightarrow { b }  \right) $$ then $$\lambda =$$
    Solution
    Given $$(\vec {a}+\lambda\vec {b})\bot (\vec {a}-\lambda {\vec{b}})$$
    $$\therefore \quad  (\vec {a}+\lambda \vec {b})(\vec {a}-\lambda \vec {b})=0$$
    $$\Rightarrow \quad  |\vec {a}|^{2}-\lambda^{2}|\vec {b}|^{2}=0$$
    $$\Rightarrow \quad  9-\lambda^{2}\cdot 16^{2}=0$$
    $$\Rightarrow \quad  \dfrac {9}{16}=\lambda^{2}$$
    $$\therefore \quad  \lambda=\pm \dfrac {3}{4}$$
    $$\therefore \quad  \lambda =\dfrac {3}{4},\lambda=-\dfrac {3}{4}$$

  • Question 8
    1 / -0
    The projection of the vector $$2\hat i + \hat j - 3\hat k$$ on  the vector $$\hat i - 2\hat j - \hat k$$
    Solution
    Given that:
    $$\vec{P}=2\hat i+\hat j -3\hat k$$
    $$\vec Q=\hat i-2\hat j -\hat k$$
    Now 
    We know that projection of $$\vec P$$ on $$\vec Q$$ is :$$\frac{\vec P . \vec Q}{|\vec Q|}$$
    So,
    $$\vec P.\vec Q=(2\hat i+\hat j-3\hat k).(\hat i-2\hat j-\hat k)$$
    $$\vec P.\vec Q=2\times1+(1\times(-2))+(-3\times-1)$$
    $$\vec P.\vec Q=2-2+3$$
    $$\vec P.\vec Q=3$$
    Now
    $$|\vec Q|=\sqrt{1+4+1}=\sqrt6$$
    So,
    $$proj{\vec Q}{\vec P}=\dfrac{3}{\sqrt6}$$
    $$proj{\vec Q}{\vec P}=\dfrac{\sqrt3}{\sqrt2}$$

  • Question 9
    1 / -0
    The position vectors of the points A,B,C are $$\overline { i } + 2 \overline { j } - \overline { k } , \overline { i } + \overline { j } + \overline { k } , 2 \overline { i } + 3 \overline { j } + 2 \overline { k }$$ respectively. If A is chosen as the origin then the position vectors of B and C are 
    Solution
    $$\textbf{Step1-Find position vector from given point}$$
                  $$\text{The origin is shifted so the new position vectors of B and C would}$$
                  $$\text{ be the difference of the old position vectors and the new origin vector i.e.}$$
                  $$(i+j+k) - (i+2j-k) = -j+2k$$ ($$\text{ New position vector of point B}$$)
                  $$(2i+3j+2k) - (i+2j-k) = i+j+3k$$ ($$\text{ New position vector of point A}$$)
    $$\textbf{Hence , option D is correct}$$
  • Question 10
    1 / -0
    If $$|a|=5.|\vec{b}|=4$$, and $$|c|=3$$. then what will be the value of $$\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}$$ given that $$\vec{a}+\vec{b}+\vec{c}=0$$
    Solution
    Given $$\left | \vec{a} \right |=5\left | \vec{b}  \right |=4$$  $$\left | \vec{c}  \right |=3$$     $$\vec{a}+\vec{b}+\vec{c} =0$$

    $$\left | \vec{a}+\vec{b}+\vec{c}  \right |=0$$

    $$\Rightarrow \left | \vec{a}+\vec{b}+\vec{c} \right |^{2}=0=(\vec{a}+\vec{b}+\vec{c}).(\vec{a}+\vec{b}+\vec{c})$$

    $$\Rightarrow \vec{a}.\vec{a}+\vec{a}.\vec{b}+\vec{a}.\vec{c}+\vec{b}.\vec{a}+\vec{b}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}+\vec{c}.\vec{b}+\vec{c}.\vec{c}=0$$

    $$\left | \vec{a} \right |^{2}+\left | \vec{b} \right |^{2}+\left | \vec{c} \right |^{2}+ 2(\vec{a}\vec{b}+\vec{b}\vec{c}+\vec{c}\vec{a})=0$$

    $$25+16+9+2(\vec{a}\vec{b}+\vec{b}\vec{c}+\vec{c}\vec{a})=0$$

    $$\Rightarrow \vec{a}\vec{b}+\vec{b}\vec{c}+\vec{c}\vec{a}=-25$$

    $$\therefore $$ Option C is correct
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now