Self Studies

Vector Algebra Test - 62

Result Self Studies

Vector Algebra Test - 62
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A unit vector $$d$$ is equally inclined at an angle $$\alpha$$ with the vectors $$a=\cos \theta. i+ \sin \theta. j , b=-\sin \theta.i+\cos =\theta. j$$ and $$c=k$$. Then $$\alpha$$ is equal to 
    Solution
    $$\begin{array}{l} a=\cos  \theta \, \, i+\sin  \theta \, \, j \\ b=-\sin  \theta \, \, i+\cos  \theta \, \, j \\ c=\hat { k }  \\ a.b=\left( { \cos  \theta \, \, i+\sin  \theta \, \, j } \right) \left( { -\sin  \theta \, \, i+\cos  \theta \, \, j } \right)  \\ \, \, \, \, \, \, \, \, \, =-\cos  \theta .\sin  \theta +\sin  \theta .\cos  \theta  \\ a.b=\left| a \right| \left| b \right| \, \, \cos  \alpha \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left[ \begin{array}{l} 0=1\times 1\, \cos  \alpha  \\ 0=\cos  \alpha  \\ \alpha =\frac { \pi  }{ 2 }  \end{array} \right]  \\ 0=\sqrt { \cos^2  \theta +\sin^2  \theta  } .\sqrt { \sin^2  \theta +\cos^2  \theta  } \, \, \cos  \alpha  \end{array}$$
  • Question 2
    1 / -0
    In the vectors $$\bar { AB } =3\hat { i } +4\hat { k } $$ and $$\bar { AC } =5\hat { i } -2\hat { j } +4\hat { k } $$ are the series of a triangle ABC, then the length of the median through A is
    Solution
    Take $$A$$ as the origin $$(0,0)$$
    So vector $$AB = 3i + 4k$$
    $$AC= 5i -2j+ 4k$$ will become position vector
    So cordinate of $$B$$ is $$(3,0,4)$$ and $$C$$ is $$(5, -2, 4)$$
    The midpoint of $$BC$$ can be easily found by midpoint formula of two points as $$D(4,-1,4)$$
    So length of median $$A$$ is
    $$AD = \sqrt{(4-0)^2 + (-1-0)^2 + (4-0)^2}$$
            $$= \sqrt{33}$$
  • Question 3
    1 / -0
    The foot of the perpendicular drawn from a point with position vector $$\hat { i } +4\hat { k } $$ on the line joining the points $$\hat { j } +3\hat { k } $$, $$2\hat { i } -3\hat { j } +\hat { k } $$ is
    Solution
    $$\begin{array}{l} \frac { x }{ 2 } =\frac { { y-1 } }{ { -4 } } =\frac { { z-3 } }{ { -2 } }  \\ \frac { x }{ 1 } =\frac { { y-1 } }{ { -2 } } =\frac { { z-3 } }{ { -1 } }  \\ Direction\, ratio\, of\, \overrightarrow { AB } :\, r-1,\, -2r+1,\, -r+1 \\ \left( { r-1 } \right) -2\left( { -2r+1 } \right) -\left( { -r-1 } \right) =0 \\ r=\frac { 1 }{ 3 }  \\ foot\, of\, perpendicular\left( { \frac { 1 }{ 3 } ,\frac { 1 }{ 3 } ,\frac { 8 }{ 3 }  } \right)  \\ Now, \\ \frac { 1 }{ 3 } \left( { \hat { i } +\hat { j } +8\hat { k }  } \right)  \\ Hence, \\ option\, \, B\, \, is\, \, correct\, \, answer. \end{array}$$
  • Question 4
    1 / -0
    The distance of the point $$  \text{P}  $$ with position vector  $$3\hat{i}+6 \hat{j}+8\hat{k}  $$ from $$  y  $$ - axis 
    Solution

  • Question 5
    1 / -0
    If  $$\vec { a } , \vec { b } , \vec { c }$$  are unit vectors such that  $$\vec { a } + \vec { b } + \vec { c } = 0 ,$$  the value of  $$\vec { a } \cdot \vec { b } + \vec { b } \cdot \vec { c } + \vec { c } \cdot \vec { a }$$  is
    Solution

  • Question 6
    1 / -0
    If $$\left( \bar { a } -\bar { b }  \right) =\bar { \left( a \right)  } =\bar { \left( b \right)  } $$ where $$\bar { a } $$ and $$\bar { b } $$ are non zero vectors then the angle between $$\bar { a } -\bar { b } $$
    Solution

  • Question 7
    1 / -0
    Line passing through $$ (3,4,5)  $$ and $$ (4,5,6)  $$ has direction ratios $$  \ldots $$
    Solution
    Given points $$(3,4,5)$$ and $$(4,5,6)$$
    The drs are given as $$(4-3,5-4,6-5)=(1,1,1)$$
  • Question 8
    1 / -0
    If radius vector of a point varies with time $$t$$ as $$\vec { r } =\vec { b } t\left( 1-\alpha t \right) $$ where $$\vec { b } $$ is a constant vector and a is a positive constant, then its
    Solution

  • Question 9
    1 / -0
    let $$\bar { a } ,\bar { b } ,\bar { c } $$ are three mutually perpendicular unit vectors and a unit vector $$ \bar { r } $$ satisfying the equation $$\left( \bar { b } -\bar { c }  \right) \times \left( \bar { r } \times \bar { a }  \right) +\left( \bar { c } -\bar { a }  \right) \times \left( \bar { r } \times \bar { b }  \right) +\left( \bar { a } -\bar { b }  \right) \times \left( \bar { r } \times \bar { c }  \right) =0$$ then $$\bar { r } $$ is __________________.
  • Question 10
    1 / -0
    Let $$\overline { a } =4\hat { i } +3\hat { j } -\hat { k } $$ and$$\overline { b } =2\hat { i } -6\hat { j } -3\hat { k } .$$ Then a unit vector $$\bot $$ to both $$\overline { a }$$ and $$\overline { b } $$is.
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now