Self Studies

Vector Algebra Test - 64

Result Self Studies

Vector Algebra Test - 64
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$a, b, c$$ are vectors such that $$a+b+c = 0$$ and $$|a| = 7, |b| = 5, |c| = 3$$, then the angle between $$c$$ and $$b$$ is
    Solution
    We have,

    $$a+b+c = 0$$
    $$\Rightarrow b+c = -a$$
    $$\Rightarrow |b+c| = |-a|$$

    $$\Rightarrow |b+c| = |a|$$
    $$\Rightarrow |b+c|^2 = |a|^2$$

    $$\Rightarrow (b+c) . (b+c) = |a|^2$$
    $$\Rightarrow |b|^2+|c|^2+2|b||c| \cos \theta = |a|^2$$

    $$\Rightarrow (5)^2 + (3)^2 + 2\times 5\times 3 \cos \theta = (7)^2$$
    $$\Rightarrow 25 + 9 + 30 \cos \theta = 49$$

    $$\Rightarrow 30 \cos \theta = 15$$
    $$\Rightarrow \cos \theta = \dfrac{1}{2}$$

    $$\Rightarrow \theta = 60^o$$ or $$\dfrac{\pi}{3}$$

    $$\therefore$$ Angle betweenn $$b$$ and $$c$$ is $$\dfrac{\pi}{3}$$.
  • Question 2
    1 / -0
    $$(\vec r. \hat i)(\vec r \times \hat i)+ (\vec r. \hat j)(\vec r \times \hat j) +(\vec r. \hat k)(\vec r \times \hat k)$$ is equal to
    Solution

  • Question 3
    1 / -0
    If $$(\vec a\times \vec b)^2 +(\vec a. \vec b)^2 =144$$ and $$|\vec a|=4$$, then $$|\vec b|=$$
    Solution

  • Question 4
    1 / -0
    $$p\hat{i}+3\hat{j}+4\hat{k}$$ and $$\sqrt{q}\hat{i}+4\hat{k}$$ are two vectors, where $$p,q>0$$ are two scalars, then the length of the vectors is equal to
    Solution

  • Question 5
    1 / -0
    Given that $$\vec a, \vec b, \vec p, \vec q$$ are four vectors such that $$\vec a + \vec b = \mu \vec p, \vec b \cdot \vec q = 0$$ and $$(\vec b)^2 = 1,$$ where $$\mu$$ is scalar. Then $$\mid (\vec a \cdot \vec q) \vec p - (\vec p \cdot \vec q)\vec a \mid$$ is equal to
    Solution
    $$\vec a + \vec b = \mu \vec p,$$    $$ \vec b \cdot \vec q = 0$$, $$(\vec b)^2 = 1,$$

    $$\because  \vec a + \vec b = \mu \vec p$$

    $$\Rightarrow  (\vec a + \vec b) \times \vec a = \mu \vec p \times \vec a, \vec b \times \vec a = \mu \vec p \times \vec a \Rightarrow  \vec q \times (\vec b \times \vec a) = \mu \vec q \times (\vec p \times \vec q)$$

    $$\Rightarrow  (\vec q \cdot \vec a) \vec b - (\vec q \cdot \vec b) \vec a = \mu \vec q \times (\vec p \times \vec a) \Rightarrow (\vec q \cdot \vec a) \vec b = \mu \vec q \times (\vec p \times \vec a)$$

    $$\because   \vec a + \vec b = \mu \vec p$$

    $$\Rightarrow  \vec q \cdot (\vec a + \vec b) = \mu \vec q \cdot \vec p$$

    $$\Rightarrow  \vec q \cdot \vec a + \vec q \cdot \vec b = \mu \vec p \cdot \vec q$$

    $$\mu = \dfrac{\vec q \cdot \vec a}{\vec p \cdot \vec q}$$

    $$\Rightarrow  (\vec q \cdot \vec a) \vec b = \dfrac{\vec q \cdot \vec a}{\vec p \cdot \vec q} [(\vec q \cdot \vec a) \cdot \vec p - (\vec q \cdot \vec p)\vec a]$$

    $$\Rightarrow  \mid (\vec q \cdot \vec a)\vec p - (\vec q \cdot \vec p)\vec a \mid = \mid (\vec p \cdot \vec q) \vec b \mid = \mid (\vec p \cdot \vec q)\mid \cdot  \mid \vec b\mid$$

    $$\Rightarrow \mid (\vec q \cdot \vec a)\vec p - (\vec q \cdot \vec p) \vec a \mid = \mid \vec p \cdot \vec q \mid$$
  • Question 6
    1 / -0

    Directions For Questions

    If $$ \vec{x} \times \vec{y}=\vec{a}, \vec{y} \times \vec{z}=\vec{b}, \vec{x} \cdot \vec{b}=\gamma, \vec{x} \cdot \vec{y}=1 $$ and $$ \vec{y} \cdot \vec{z}=1 $$

    ...view full instructions

    Vector $$ \vec{x} $$ is
    Solution
    Given 
    $$ \vec{x} \times \vec{y}=\vec{a} $$ $$\qquad (i)$$
    $$ \vec{y} \times \vec{z}=\vec{b} $$ $$\qquad (ii)$$
    $$ \vec{x} \cdot \vec{b}=\gamma $$ $$\qquad (iii)$$
    $$ \vec{x} \cdot \vec{y}=1 $$ $$\qquad (iv)$$
    $$ \vec{y} \cdot \vec{z}=1 $$ $$\qquad (v)$$
    From (ii), $$ \vec{x} \cdot(\vec{y} \times \vec{z})=\vec{x} \cdot \vec{b}=\gamma \Rightarrow[\vec{x} \vec{y} \vec{z}]=\gamma $$
    From (i) and (ii), $$ (\vec{x} \times \vec{y}) \times(\vec{y} \times \vec{z})=\vec{a} \times \vec{b} $$
    $$ \therefore[\vec{x} \vec{y} \vec{z}] \vec{y}-[\vec{y} \vec{y} \vec{z}] \vec{x}=\vec{a} \times \vec{b} \Rightarrow \vec{y}=\dfrac{\vec{a} \times \vec{b}}{\gamma} $$ $$\qquad (vi)$$
    Also from (i), we get $$ (\vec{x} \times \vec{y}) \times \vec{y}=\vec{a} \times \vec{y} $$
    $$ \Rightarrow(\vec{x} \cdot \vec{y}) \vec{y}-(\vec{y} \cdot \vec{y}) \vec{x}=\vec{a} \times \vec{y} \Rightarrow \vec{x}=\left(1 /|\vec{y}|^{2}\right)(\vec{y}-\vec{a} \times \vec{y})=\dfrac{\gamma^{2}}{|\vec{a} \times \vec{b}|^{2}}\left[\dfrac{\vec{a} \times \vec{b}}{\gamma}-\dfrac{\vec{a} \times(\vec{a} \times \vec{b})}{\gamma}\right] $$
    $$\begin{array}{l}\Rightarrow \vec{x}=\dfrac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a} \times \vec{b}-\vec{a} \times(\vec{a} \times \vec{b})] \end{array}$$
  • Question 7
    1 / -0

    Directions For Questions

    If $$ \vec{x} \times \vec{y}=\vec{a}, \vec{y} \times \vec{z}=\vec{b}, \vec{x} \cdot \vec{b}=\gamma, \vec{x} \cdot \vec{y}=1 $$ and $$ \vec{y} \cdot \vec{z}=1 $$

    ...view full instructions

    Vector $$ \vec{z} $$ is
    Solution
    Given 
    $$ \vec{x} \times \vec{y}=\vec{a} $$ $$\qquad (i)$$
    $$ \vec{y} \times \vec{z}=\vec{b} $$ $$\qquad (ii)$$
    $$ \vec{x} \cdot \vec{b}=\gamma $$ $$\qquad (iii)$$
    $$ \vec{x} \cdot \vec{y}=1 $$ $$\qquad (iv)$$
    $$ \vec{y} \cdot \vec{z}=1 $$ $$\qquad (v)$$

    $$\begin{array}{l} \text { Also from (ii), }(\vec{y} \times \vec{z}) \times \vec{y}=\vec{b} \times \vec{y} \Rightarrow|\vec{y}|^{2} \vec{z}-(\vec{z} \cdot \vec{y}) \vec{y}=\vec{b} \times \vec{y} \\\Rightarrow \vec{z}=\dfrac{1}{|\vec{y}|^{2}}[\vec{y}+\vec{b} \times \vec{y}]=\dfrac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a} \times \vec{b}+\vec{b} \times(\vec{a} \times \vec{b})]\end{array}$$
  • Question 8
    1 / -0

    Directions For Questions

    If $$ \vec{x} \times \vec{y}=\vec{a}, \vec{y} \times \vec{z}=\vec{b}, \vec{x} \cdot \vec{b}=\gamma, \vec{x} \cdot \vec{y}=1 $$ and $$ \vec{y} \cdot \vec{z}=1 $$

    ...view full instructions

    Vector $$ \vec{y} $$ is
    Solution
    Given 
    $$ \vec{x} \times \vec{y}=\vec{a} $$ $$\qquad (i)$$
    $$ \vec{y} \times \vec{z}=\vec{b} $$ $$\qquad (ii)$$
    $$ \vec{x} \cdot \vec{b}=\gamma $$ $$\qquad (iii)$$
    $$ \vec{x} \cdot \vec{y}=1 $$ $$\qquad (iv)$$
    $$ \vec{y} \cdot \vec{z}=1 $$ $$\qquad (v)$$
    From (ii), $$ \vec{x} \cdot(\vec{y} \times \vec{z})=\vec{x} \cdot \vec{b}=\gamma \Rightarrow[\vec{x} \vec{y} \vec{z}]=\gamma $$
    From (i) and (ii), $$ (\vec{x} \times \vec{y}) \times(\vec{y} \times \vec{z})=\vec{a} \times \vec{b} $$
    $$ \therefore[\vec{x} \vec{y} \vec{z}] \vec{y}-[\vec{y} \vec{y} \vec{z}] \vec{x}=\vec{a} \times \vec{b} \Rightarrow \vec{y}=\dfrac{\vec{a} \times \vec{b}}{\gamma} $$ 
  • Question 9
    1 / -0
    If $$\vec r$$ and $$\vec s$$ are non-zero constant vectors and the scalar $$b$$ is chosen such that $$\mid \vec r + b \vec s \mid$$ is minimum, then the value of $$\mid b \vec s \mid^2 + \mid \vec r + b \vec s \mid^2$$ is equal to
    Solution
    For minimum value $$\mid \vec r + b \vec s \mid = 0$$
    Let $$\vec r$$ and $$\vec s$$ are anti parallel so $$b \vec s = - \vec r$$
    so $$\mid b \vec s\mid^2 + \mid \vec r + b \vec s \mid^2 = \mid - \vec r \mid^2 + \mid \vec r - \vec r \mid^2 = \mid \vec r \mid^2$$
  • Question 10
    1 / -0

    Directions For Questions

    Given two orthogonal vectors $$ \vec{A} $$ and $$ \vec{B} $$ each of length unity. Let $$ \vec{P} $$ be the vector satisfying the equation $$ \vec{P} \times \vec{B}=\vec{A}-\vec{P} \cdot $$ Then

    ...view full instructions

    $$ (\vec{P} \times \vec{B}) \times \vec{B} $$ is equal to
    Solution
    $$ \vec{P} \times \vec{B}=\vec{A}-\vec{P} $$ and $$ |\vec{A}|=|\vec{B}|=1 $$ and $$ \vec{A} \cdot \vec{B}=0 $$ is given
    Now $$ \vec{P} \times \vec{B}=\vec{A}-\vec{P} $$ $$ \qquad (i)$$
    $$ (\vec{P} \times \vec{B}) \times \vec{B}=(\vec{A}-\vec{P}) \times \vec{B} $$ (taking cross product with $$ \vec{B} $$ on both sides)
    $$\begin{array}{l}\Rightarrow(\vec{P} \cdot \vec{B}) \vec{B}-(\vec{B} \cdot \vec{B}) \vec{P}=\vec{A} \times \vec{B}-\vec{P} \times \vec{B} \\\Rightarrow(\vec{P} \cdot \vec{B}) \vec{B}-\vec{P}=\vec{A} \times \vec{B}-\vec{A}+\vec{P} \\\Rightarrow 2 \vec{P}=\vec{A}-\vec{A} \times \vec{B}-(\vec{P} \cdot \vec{B}) \vec{B} \\\Rightarrow \vec{P}=\dfrac{\vec{A}-\vec{A} \times \vec{B}-(\vec{P} \cdot \vec{B}) \vec{B}}{2}\end{array}$$ $$ \qquad (ii)$$

    Taking dot product with $$ \vec{B} $$ on both sides of (i), we get
    $$\begin{array}{l}\vec{P} \cdot \vec{B}=\vec{A} \cdot \vec{B}-\vec{P} \cdot \vec{B} \\\Rightarrow \vec{P} \cdot \vec{B}=0 \qquad \qquad (iii) \\\Rightarrow \vec{P}=\dfrac{\vec{A}+\vec{B} \times \vec{A}}{2}\end{array}$$

    Now
    $$(\vec{P} \times \vec{B}) \times \vec{B}=(\vec{P} \cdot \vec{B}) \vec{B}-(\vec{B} \cdot \vec{B}) \vec{P}=-\vec{P}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now