Self Studies

Vector Algebra Test - 73

Result Self Studies

Vector Algebra Test - 73
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$\vec{a}=\hat{i}-\hat{j},\vec{b}=\hat{i}-\hat{j}=\vec{c}=\hat{i}-\hat{j}$$, if $$\vec{d}$$ is a unit vector such that $$\vec{a}.\vec{d}=0=|\vec{b}\vec{c}\vec{d}|$$ then $$\vec{d}$$ equals:
    Solution

  • Question 2
    1 / -0
    If $$\vec a = 4 i + 5 j - k , \vec { b } = i - 4 j + 5 k , \vec c = 3 i + j - k$$ such that $$\vec { p } \perp \vec { a } , \vec { p } \perp \overline { b }$$ and $$\vec { p . c } = 21 ,$$ then $$p =$$



    Solution

  • Question 3
    1 / -0
    Vector $$\vec { x }$$ satisfying the relation $$\vec { A } . \overline { x } = c$$ and $$\vec { A } \times \vec { x } = \vec { B }$$ is
    Solution

  • Question 4
    1 / -0
    For any vector $$\vec a$$, the value of $${ (\vec a\times \hat i) }^{ 2 }+{ (\vec a\times \hat j) }^{ 2 }+{ (\vec a\times \hat k) }^{ 2 }$$ is equal to
    Solution

  • Question 5
    1 / -0
    In a parallelogram ABD, $$|\overset { \_  }{ A\overset { \rightarrow  }{ B }  } |=a,|\overset { \_  }{ A\overset { \rightarrow  }{ D }  } |=b$$ and $$|\overset { \_ \\ \quad \quad \rightarrow  }{ AC } |=c,$$, $$\overset { \_ \rightarrow  }{ AB } .\overset { \_ \rightarrow  }{ DB } $$ has the value :
    Solution

  • Question 6
    1 / -0
    If the position vectors of the vertices $$A,B$$ and $$C$$ of a $$\Delta ABC$$ are respectively $$4\hat{i}+7\hat{j}+8\hat{k},2\hat{i}+3\hat{j}+4\hat{k}$$ and $$2\hat{i}+5\hat{j}+7\hat{k}$$, then the position vector of the point, where the bisector of $$\angle A$$ meets $$BC$$ is:
  • Question 7
    1 / -0
    let $$\bar { a } $$ be a unit vector and $$\bar { b } $$ be a non-zero vector not parallel to $$\bar { a } $$ if two sides of a triangle are represented by the vectors $$\sqrt { 3 } \left( \bar { a } \times \bar { b }  \right) \quad and\quad \bar { b } - \left( \bar { a } .\bar { b }  \right) \bar { a } $$ then the angles of triangle are 
    Solution

  • Question 8
    1 / -0
    In a triangle ABC, if $$A=(0, 0), B=(3, 3\sqrt{3}), C=(-3\sqrt{3}, 3)$$ then the vector of magnitude $$2\sqrt{2}$$ units directed along $$\overline{AO}$$, where O is the circumcentre of triangle ABC is?
    Solution

  • Question 9
    1 / -0
    If $$a=i-j,b=i+j,c=i+3j+5k$$ and $$n$$ is a unit vector such that $$b,n=0,a,n=0$$ then the value of $$|c,n|$$ is equal to
    Solution
    $$\begin{array}{l} { b_{ n } }=0 \\ \left( { \hat { i } +\hat { j }  } \right) \left( { a\hat { i } +\hat { i } e } \right) =0 \\ a+b=c \\ \left( { -\hat { j }  } \right) \left( { a\hat { i } +b\hat { j }  } \right) =0 \\ a-b=0\, \, \, \, \, \, \, a=0=b \\ \left( { \bar { c } \cdot \bar { n }  } \right)  \\ \left( { \hat { i } +3\hat { j } +5\hat { b }  } \right) \cdot \left( { c\hat { k }  } \right)  \\ =5c\, =\sqrt { { a^{ 2 } }+{ b^{ 2 } }+{ c^{ 2 } } } =1 \\ =5 \end{array}$$
  • Question 10
    1 / -0
    $$If\quad |\overrightarrow { a } |$$ =2 and $$\quad |\overrightarrow { b } |$$=3 and $$\quad |\overrightarrow { a } |$$.$$\quad |\overrightarrow { b } |$$ =0. Then (a x (a x (a x (a x b)))) is equal to 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now