Self Studies

Vector Algebra Test - 74

Result Self Studies

Vector Algebra Test - 74
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\hat{u}$$ and $$\hat{v}$$ are unit vectors and $$\theta$$ is the acute angle between them , then 2$$\hat{u}$$ 3$$\hat{v}$$ is a unit vector for
    Solution
    Given,
    $$\bar{u}$$ and $$\vec{v}$$ are unit vector
    $$|\vec{u}|=1$$
    $$|\vec{v}|=1$$

    Now,
    $$\Rightarrow|2 \vec{u}||\overrightarrow{3 v}| \sin \theta=1$$
    $$|\overrightarrow{2 u} \times \rightarrow{\vec{3 v}}|$$
    $$[\because|\vec{a} \times \vec{b}|=|\vec a|\vec b|| \sin \theta]$$

    $$\Rightarrow 2 \cdot 3|\bar{u}| \nabla \mid \sin \theta=1 \\$$

    $$\sin \theta=\frac{1}{6}$$

    $$\text { There is only one value of } \theta \\$$
    $$\text { for which }|\vec 24 \times \vec 3V| \text { is a } \\$$
    $$\text { unit vector. }$$

    $$\text { option } B$$

  • Question 2
    1 / -0
    Let $$\vec{a}$$ = $$\hat{i}$$  $$\hat{j}$$, $$\vec{b}$$ = $$\hat{j}$$  $$\hat{k}$$, $$\vec{c}$$ = $$\hat{k}$$  $$\hat{i}$$. If $$\vec{d}$$ is a unit vector such that $$\vec{a}.\vec{d}$$ = 0 = $$\left | \vec{b}\vec{c}\vec{d} \right |$$ then $$\vec{d}$$ equals :
  • Question 3
    1 / -0
    Vector $$\vec{  A} $$ and $$\vec{  B} $$ include an angle $$\theta $$ between them. If  $$\vec {  A}+\vec {  B}$$ and $$\vec {  A}-\vec {  B}$$  respectively subtend angles $$\alpha $$ and $$\beta$$ with $$\vec {  A}$$, then $$(\tan { \theta } +\tan { \beta} ) $$ is
    Solution

  • Question 4
    1 / -0
    If $$a$$,$$b$$ and care three mutually perpendicular vectors, then the projection of the vector $$ \left|\frac{a}{|a|}+m \frac{b}{|b|}+n \frac{(a \times b)}{|a \times b|}\right. $$ along the angle bisector of the vector $$a$$ and $$b$$ is
    Solution

  • Question 5
    1 / -0
    The value of $$\lambda $$ for $$\left( x,y,z \right) \neq \left( 0,0,0 \right) $$ and $$\left( i+j+3k \right) x+\left( 3i-3j+k \right) y+\left( -4i+5j \right) z=\lambda \left( xi+yj+zk \right) $$ are
    Solution

  • Question 6
    1 / -0
    The position vector of a point lying on the joining the points whose position vectors are $$\overline i + \overline j -\overline k$$ and $$\overline i - \overline j +\overline k$$ is
    Solution

  • Question 7
    1 / -0
    If $$\overline { a } =-2\overline { i } +3\overline { j } +4\overline { k } $$ and $$\overline { b } =-2\overline { i } -2\overline { j } +3\overline { k } $$ then $$\overline { a } .\overline { b } $$ is 
    Solution

  • Question 8
    1 / -0
    If $$\overset { \rightarrow  }{ a } ,\overset { \rightarrow  }{ b } ,\overset { \rightarrow  }{ c } $$ are unit vectors such that $$\overset { \rightarrow  }{ a } +\overset { \rightarrow  }{ b } +\overset { \rightarrow  }{ c } =0$$ then the value of $$\overset { \rightarrow  }{ a. } \overset { \rightarrow  }{ b } +\overset { \rightarrow  }{ b } .\overset { \rightarrow  }{ c } +\overset { \rightarrow  }{ c } .\overset { \rightarrow  }{ a. } $$ is 
    Solution

  • Question 9
    1 / -0
    Let position vector of the orthocentre of $$\triangle ABC$$ be $$\overrightarrow{r}$$. then, which of the following statement(s) is\are correct (Given position vector of points $$a\hat{i},b\hat{j},c\hat{k}$$ and $$abc=0$$)

    Solution

  • Question 10
    1 / -0
    If C is the mid point of AB and P is any point outside AB , then
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now