Self Studies

Three Dimension...

TIME LEFT -
  • Question 1
    1 / -0

    The vector equation $$r=i-2j-k+t(6j-k)$$ represents a straight line passing through the points:

  • Question 2
    1 / -0

    A line makes the same angle $$\theta$$ with each of the $$X$$ and $$Z$$-axes. If the angle $$\beta$$, which it makes with $$Y$$-axis, is such that $$\sin ^{ 2 }{ \beta  } =3\sin ^{ 2 }{ \theta  } $$, then $$\cos ^{ 2 }{ \theta  } $$ equals

  • Question 3
    1 / -0

    Equation to a line parallel to the vector $$2\hat{i}-\hat{j}{+}\hat{k}$$ and passing through the point $$\hat{i}+\hat{j}{+\hat{k}}$$

  • Question 4
    1 / -0

    The points with position vectors $$ 60i + 3j,  40i -8j$$ and $$ ai -52j $$ are collinear if

  • Question 5
    1 / -0

    If the direction cosines of a line are $$\left(\displaystyle \dfrac{1}{c},\dfrac{1}{c},\dfrac{1}{c}\right)$$ then $$c=$$______

  • Question 6
    1 / -0

    $$l = m =n = 1$$ represents the direction cosines of 

  • Question 7
    1 / -0

    The direction ratios of the diagonal of the cube joining the origin to the opposite corner are (when the $$3$$ concurrent edges of the cube are coordinate axes)

  • Question 8
    1 / -0

     List IList II 
    1) d.c's of $$x -$$ axisa) $$(1,1,1)$$ 
    2) d.c's of $$y -$$ axisb)$$\left(\displaystyle \frac{]}{\sqrt{3}}\frac{]}{\sqrt{3}},\frac{]}{\sqrt{3}}\right)$$
    3) d.c's of $$z -$$ axisc) $$(1,0,0)$$
    4) d.c's of a line makes equal angles with axesd) $$(0,1,0)$$
     e) $$(0,0,1)$$
    The correct order for 1, 2, 3, 4 is

  • Question 9
    1 / -0

    If $$P(x, y, z)$$ moves such that $$x=0, z=0$$, then the locus of $$P$$ is the line whose d.cs are

  • Question 10
    1 / -0

    If the points $$A(\overline{a}), B(\overline{b}), C(\overline{c})$$ satisfy the relation $$3\mathrm{a}-8\mathrm{b}+5\mathrm{c}=0$$ then the points are

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now