Self Studies

Three Dimensional Geometry Test - 14

Result Self Studies

Three Dimensional Geometry Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The vector equation $$r=i-2j-k+t(6j-k)$$ represents a straight line passing through the points:
    Solution
    Cartesian representation of the given line is,

    $$\dfrac{x-1}{0}=\dfrac{y+2}{6}=\dfrac{z+1}{-1}=t$$
    So any point on the given line is of the form $$(1,6t-2, -t-1)$$
    where $$t$$ can be any real numbers

    so for $$t=0$$ and $$1$$ the corresponding points are $$(1,-2,-1)$$ and $$(1,4,-2)$$

    You can check other options does not satisfy above point for any $$t$$.
  • Question 2
    1 / -0
    A line makes the same angle $$\theta$$ with each of the $$X$$ and $$Z$$-axes. If the angle $$\beta$$, which it makes with $$Y$$-axis, is such that $$\sin ^{ 2 }{ \beta  } =3\sin ^{ 2 }{ \theta  } $$, then $$\cos ^{ 2 }{ \theta  } $$ equals
    Solution
    Let $$l,m$$ and $$n$$ be the direction cosines

    Then, $$l=\cos { \theta  } ,m=\cos { \beta  } ,n=\cos { \theta  } $$

    We have $$\quad { l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 }=1$$

    $$\Rightarrow \cos ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \beta  } +\cos ^{ 2 }{ \theta  } =1\quad $$

    $$\Rightarrow 2\cos ^{ 2 }{ \theta  } -\sin ^{ 2 }{ \beta  } =0$$

    $$\Rightarrow 2\cos ^{ 2 }{ \theta  } -3\sin ^{ 2 }{ \beta  } =0\left[ \because \sin ^{ 2 }{ \beta  } =3\sin ^{ 2 }{ \theta  }  \right] $$

    $$\Rightarrow \tan ^{ 2 }{ \theta  } =\dfrac {2}{3}$$

    Therefore, $$\cos ^{ 2 }{ \theta  } =\cfrac { 1 }{ 1+\tan ^{ 2 }{ \theta  }  } =\cfrac { 3 }{ 5 } $$
  • Question 3
    1 / -0
    Equation to a line parallel to the vector $$2\hat{i}-\hat{j}{+}\hat{k}$$ and passing through the point $$\hat{i}+\hat{j}{+\hat{k}}$$
    Solution
    Equation parallel to a vector $$\vec{a}$$ and passing through point of position vector $$\vec{b}$$ is given by $$\vec{r}=\vec{a}+\lambda \vec{b}$$
    $$\vec{r}= (\hat{i}+\hat{j}+\hat{k})+\lambda (2\hat{i}-\hat{j}+\hat{k})$$
    $$x\hat{i}+y\hat{j}+z\hat{k}= \hat{i}+\hat{j}+\hat{k}+\lambda (2\hat{i}-\hat{j}+\hat{k})$$
    $$(x-1)\hat{i}+(y-1)\hat{j}+(z-1)\hat{k}= \lambda (2\hat{i}-\hat{j}+\hat{k})$$
  • Question 4
    1 / -0
    The points with position vectors $$ 60i + 3j,  40i -8j$$ and $$ ai -52j $$ are collinear if
    Solution
    Denoting $$a,b,c$$ by the given vectors respectively
    These vectors will be collinear if there is some constant $$k$$ such that $$c-a=K\left( b-a \right) $$
    $$\Rightarrow a-60=-20K$$ and $$-55=-11K$$
    $$\Rightarrow a=-100+60=-40$$
  • Question 5
    1 / -0

    If the direction cosines of a line are $$\left(\displaystyle \dfrac{1}{c},\dfrac{1}{c},\dfrac{1}{c}\right)$$ then $$c=$$______

    Solution
    If direction cosines are $$\left ( \dfrac{1}{c}, \dfrac{1}{c}, \dfrac{1}{c} \right)$$
    $$\Rightarrow \left (\dfrac {1}{c}\right)^2+\left (\dfrac {1}{c}\right)^2 +\left (\dfrac {1}{c}\right)^2 = 1 $$
    $$\Rightarrow c^{2} = 3$$
    $$\Rightarrow c=\pm\sqrt 3$$
  • Question 6
    1 / -0
    $$l = m =n = 1$$ represents the direction cosines of 

    Solution
    Suppose, $$l,m,n$$ are direction cosines
    $$\implies l^2+m^2+n^2=1$$
    But $$l=m=n=1$$
    $$\implies 3m^2=1$$
    $$\implies l=m=n=\dfrac{1}{\sqrt{3}}$$ which are not direction cosines of either of the three co-ordinate axes.
    Hence, option D is correct.
  • Question 7
    1 / -0
    The direction ratios of the diagonal of the cube joining the origin to the opposite corner are (when the $$3$$ concurrent edges of the cube are coordinate axes)
    Solution
    Since, a cube is a symmetric figure, the vertex we are talking about will be at the diagonally opposite end of the origin. i.e. it will be equally inclined to the three axes.
    Let the side of the cube be $$a$$, then the corner opposite to origin will have coordinates $$(a,a,a)$$.
    Direction ratios of a line joining two points $$(x_1,y_1,z_1)$$ and $$(x_2,y_2,z_2)$$ is given by $$(x_2-x_1,y_2-y_1,z_2-z_1)$$
    Then, direction ratios of two point $$(0,0,0)$$ and $$(a,a,a)$$ will be $$(a-0,a-0,a-0)=(a,a,a)=a(1,1,1)$$
    Hence, the direction ratios are $$1,1,1$$.
  • Question 8
    1 / -0
     List IList II 
    1) d.c's of $$x -$$ axisa) $$(1,1,1)$$ 
    2) d.c's of $$y -$$ axisb)$$\left(\displaystyle \frac{]}{\sqrt{3}}\frac{]}{\sqrt{3}},\frac{]}{\sqrt{3}}\right)$$
    3) d.c's of $$z -$$ axisc) $$(1,0,0)$$
    4) d.c's of a line makes equal angles with axesd) $$(0,1,0)$$
     e) $$(0,0,1)$$
    The correct order for 1, 2, 3, 4 is
    Solution
    On the $$x-$$ axis, the other $$2$$ coordinates $$y,z$$ will be $$0$$.
    So, the point is $$(1,0,0)$$
    Direction cosines of $$x-$$ axis i.e $$(1,0,0)$$ is $$(1,0,0)$$ 
    $$\therefore$$ Direction cosines of $$x-$$ axis are $$(1,0,0)$$
    Similarly, direction cosines of $$y$$ and $$z$$ axes are $$(0,1,0)$$ and $$(0,0,1)$$ respectively.
    $$\implies 1\rightarrow c, 2\rightarrow d, 3\rightarrow e$$
    For the fourth part where we need to find the dc's of a line that makes equal angles with the axes. 
    The components of such a line will always be equal.
    Moreover, the sum of the squares of the dc's of a line should be equal. 
    If the point is $$(a,a,a)$$, then $$a^2+a^2+a^2=3a^2$$
    So, the direction cosines are $$\left(\dfrac{a}{\sqrt{3a^2}},\dfrac{a}{\sqrt{3a^2}},\dfrac{a}{\sqrt{3a^2}}\right)=\left(\dfrac{1}{\sqrt3},\dfrac{1}{\sqrt3},\dfrac{1}{\sqrt3}\right)$$
    $$\implies 4\rightarrow b$$
    Hence, option A is correct.
  • Question 9
    1 / -0
    If $$P(x, y, z)$$ moves such that $$x=0, z=0$$, then the locus of $$P$$ is the line whose d.cs are
    Solution
    When $$P$$ moves then $$x=0,z=0$$ but $$y$$ is not given.
    Let $$y=y$$
    Then the coordinates of the point will be $$(0,y,0)$$
    Now, direction cosines with respect to $$(0,y,0)$$ is given by
    $$\cos \alpha = \dfrac{0}{\sqrt{0^2+y^2+0^2}}=\dfrac{0}{y}=0$$
    $$\cos \beta = \dfrac{y}{\sqrt{0^2+y^2+0^2}}=\dfrac{y}{y} = 1$$
    $$\cos \gamma = \dfrac{0}{\sqrt{0^2+y^2+0^2}}=\dfrac{0}{y}=0$$
    Hence, the direction cosines are $$0,1,0$$.
  • Question 10
    1 / -0
    If the points $$A(\overline{a}), B(\overline{b}), C(\overline{c})$$ satisfy the relation $$3\mathrm{a}-8\mathrm{b}+5\mathrm{c}=0$$ then the points are
    Solution
    The points $$A(\vec{a}), B(\vec{b}), C(\vec{c})$$ satisfy the relation $$3a-8b+5c=0$$
    $$\implies 3\vec{a}-8\vec{b}+5\vec{c}=0$$
    $$\implies 3\vec{a}+5\vec{c}=8\vec{b}$$
    $$\implies \dfrac{3\vec{a}+5\vec{c}}{8}=\vec{b}$$
    $$\implies \dfrac{3\vec{a}+5\vec{c}}{3+5}=\vec{b}$$
    Similarly, $$\vec{a}=\dfrac{8\vec{b}-5\vec{c}}{8-5}$$ and $$\vec{c}=\dfrac{8\vec{b}-3\vec{a}}{8-3}$$
    This is a section formula.
    Hence $$\vec{a},\vec{b},\vec{c}$$ are collinear.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now