Self Studies

Three Dimensional Geometry Test - 19

Result Self Studies

Three Dimensional Geometry Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation of the plane passing through $$(a,b,c)$$ and parallel to the plane $$r.(\hat{i}+\hat{j}+\hat{k})=2$$ is,
    Solution
    Let any point on the plane be $$(x,y,z)$$ then,
    $$1(x-a)+1(y-b)+1(z-c)=0\implies x+y+z=a+b+c$$
  • Question 2
    1 / -0
    Angle between the lines $$3x=6y=2z$$ and $$3x+2y+z-5=0=x+y-2z-3$$ is?
    Solution
    The given two planes  have a line of intersection,
    whose equation can be found by,
    $$\begin{array}{l} \left| { \begin{array} { *{ 20 }{ c } }{ \widehat { i }  } & { \widehat { j }  } & { \widehat { k }  } \\ 3 & 2 & 1 \\ 1 & 1 & { -2 } \end{array} } \right|  \\ =\widehat { i\,  } (-4-1)-\widehat { j } (-6-1)+\widehat { k } (3-2) \\ =-5\widehat { i } +7\widehat { j } +\widehat { k }  \end{array}$$

    Given line is,  
                       $$\begin{array}{l} 3x=6y=2z \\ \frac { x }{ 2 } =y=\frac { z }{ 3 }  \end{array}$$
    so, its vector equation is   $$2\widehat i + \widehat j + 3\widehat k$$.

    Angle between line is cos$$\theta $$=$$\frac{{( - 5)(2) + 7(1) + 1(3)}}{{\sqrt {25 + 49 + 1} \,\,\,\sqrt {4 + 1 + 9} }}$$

                                                 = $$\frac{0}{{\sqrt {25 + 49 + 1} \,\,\,\sqrt {4 + 1 + 9} }}$$
                                         cos$$\theta $$ = 0
                                        Therefor  $$\theta $$ = $$\frac{\pi }{2}$$
    So that the correct Option is D


  • Question 3
    1 / -0
    The points $$i + j + k, \, i + 2j, \, 2i+2j+k,\, 2i+3j+2k$$ are
    Solution
    $$\begin{matrix} A& B& C& D\\i+j+k, &i+2j, &2i+2j+k,&2i+3j+2k \end{matrix}$$
    $$\overline{AC} = (2-1)i + (2-1)j + k-k$$
    $$=i+j$$
    $$\overline{AB} = o + j - \overline{k} = j - \overline{k}$$
    $$\overline{AD} = i + 2j + k$$
    $$\begin{vmatrix} 1&1&0 \\0&2 &1\end{vmatrix} = 1(1+2)-1(0+1)$$
    $$=3-1 = 2 \neq 0$$
    Non coplanar.
  • Question 4
    1 / -0
    If the dr's the line are $$(1+\lambda, 1-\lambda, 2)$$ and it makes an angle $${60}^{o}$$ with the Y-axis then $$\lambda$$ is
    Solution
    Given that,
    $$\begin{array}{l} \frac { { \left| { 1-\lambda  } \right|  } }{ { \sqrt { { { \left( { 1+\lambda  } \right)  }^{ 2 } }+{ { \left( { 1-\lambda  } \right)  }^{ 2 } }+4 }  } } =\frac { 1 }{ 2 }  \\ \frac { { \left| { 1-\lambda  } \right|  } }{ { \sqrt { 6+2{ \lambda ^{ 2 } } }  } } =\frac { 1 }{ 2 }  \\ 4{ \left( { \left| { 1-\lambda  } \right|  } \right) ^{ 2 } }=6+2{ \lambda ^{ 2 } } \\ 2{ \lambda ^{ 2 } }-2-8\lambda =0 \\ { \lambda ^{ 2 } }-4\lambda -1=0 \\ \lambda =\frac { { 4\pm \sqrt { 16+4 }  } }{ 2 } =\frac { { 4\pm 2\sqrt { 5 }  } }{ 2 }  \\ =2\pm \sqrt { 5 }  \end{array}$$
    Then,
    We get $$2 \pm \sqrt 5 $$
    Option $$D$$ is correct answer.
  • Question 5
    1 / -0
    The line joining the points $$(-2, 1, -8)$$ and $$(a, b, c)$$ is parallel to the line whose direction ratios are $$6, 2, 3$$. The value of $$a, b, c$$ are
    Solution
    If lines are parallel
    then their direction
    ratios must be equal
    $$\Rightarrow a+2=6$$
    $$a=4$$
    $$b-1=2$$
    $$b=3$$
    $$c+8=3$$
    $$c=-5$$
    $$\therefore (a,b,c)$$ is $$(4,3,-5)$$

  • Question 6
    1 / -0
    If a line has the direction ratio $$18, 12, 4 $$, then its direction cosines are:
    Solution
    Dr's of the line are : 18, 12, 4
    Dc's = $$\dfrac{18}{\sqrt{18^2+12^2+4^2}}, \dfrac{12}{\sqrt{18^2+12^2+4^2}}, \dfrac{4}{\sqrt{18^2+12^2+4^2}}$$

    $$=\dfrac{18}{22}, \dfrac{12}{22}, \dfrac{4}{22}$$

    $$=\dfrac{9}{11}, \dfrac{6}{11}, \dfrac{2}{11}$$
  • Question 7
    1 / -0
    The angle between the lines $$\dfrac {x - 1}{1} = \dfrac {y - 1}{1} = \dfrac {z - 1}{2}$$ and, $$\dfrac {x - 1}{-\sqrt {3} - 1} =  \dfrac {y - 1}{\sqrt {3} - 1} = \dfrac {z - 1}{4}$$ is
    Solution
    Given  the lines are $$\dfrac {x - 1}{1} = \dfrac {y - 1}{1} = \dfrac {z - 1}{2}$$ and, 

    $$\dfrac {x - 1}{-\sqrt {3} - 1} =  \dfrac {y - 1}{\sqrt {3} - 1} = \dfrac {z - 1}{4}$$.

    The direction ratios of the lines are $$1,1,2$$ and $$-\sqrt{3}-1,\sqrt{3}-1,4$$.
    Then the angle between the given two lines is

    $$\cos^{-1}\left(\dfrac{1.(-\sqrt{3}-1)+1.(\sqrt{3}-1)+2.4}{\sqrt{1^2+1^2+2^2}.\sqrt{(\sqrt{3}+1)^2+(\sqrt{3}-1)^2+4^2}}\right)$$

    $$=\cos^{-1}\left(\dfrac{6}{\sqrt{6}.\sqrt{24}}\right)$$
    $$=\cos^{-1}\left(\dfrac{6}{12}\right)$$

    $$=\dfrac{\pi}{3}$$.
  • Question 8
    1 / -0
    Equation of a line passing through the point $$\hat{i}+\hat{j}-\hat{k}$$ and parallel to the vector $$2\hat{i}+\hat{j}{+}2\hat{k}$$ is
    Solution
    The required equation of the line in Cartesian format will be
    $$\dfrac{x-1}{2}=\dfrac{y-1}{1}=\dfrac{z+1}{2}=t$$
    Hence, any point on the line can be written as
    $$x=2t+1$$, $$y=t+1$$ and $$z=2t-1$$
    Hence in vector format,
    $$\vec{r}=xi+yj+zk$$
       $$=(2t+1)i+(t+1)j+(2t-1)k$$
  • Question 9
    1 / -0
    If the points with position vectors $$60\hat{i}+3\hat{j},40\hat{i}-8\hat{j}$$ and $$a\hat{i}-52\hat{j}$$ are collinear then $$a$$ is equal to
    Solution

  • Question 10
    1 / -0
    Equation of a plane passing through the points $$A=\hat{i}+\hat{j}{+}\hat{k},\ B=\hat{j}{+\hat{k}}, C=\hat{k}$$ is
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now