Self Studies

Three Dimensional Geometry Test - 29

Result Self Studies

Three Dimensional Geometry Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Equation of the line which passes through the point with position vector $$(2, 1, 0)$$ and perpendicular to the plane containing the vectors $$i + j$$ and $$j + k$$ is
    Solution
    $$\vec{r}=position\ vector\ \vec{a}+t(normal\ vector\ \vec{n})$$
    normal vector of plane
    Given $$\vec{a}=\hat{i}+\hat{j}$$
    $$\vec{b}=\hat{j}+\hat{k}$$
    $$\vec{n}=\vec{a}\times\vec{b}$$
    $$\Rightarrow\vec{a}\times\vec{b}=\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\1&1&0\\0&1&1\end{vmatrix}$$
    $$\Rightarrow\vec{a}\times\vec{b}=\hat{i}(1-0)-\hat{j}(1-0)+\hat{k}(1-0)$$
    $$\Rightarrow\vec{a}\times\vec{b}=\hat{i}-\hat{j}+\hat{k}$$
    eq become 
    $$\Rightarrow\vec{r}=(2,1,0)+t(1,-1,1)$$
  • Question 2
    1 / -0
    The projections of a directed line segment on the coordinate axes $$12, 4, 3$$. The direction cosines of the line are
    Solution
    Assuming position vector of line segment ends point are $$\vec{A}$$ and $$\vec{B}$$
    Now given projection of line segment on the axes are $$(12, 4, 3)$$
    So $$\vec{AB} = 12 \hat{i} + 4\hat{j} + 3 \hat{k}$$
    Hence, direction cosine of  line segment  are $$\dfrac{12}{\sqrt{12^2+4^2+3^2}}, \dfrac{4}{\sqrt{12^2+4^2+3^2}}, \dfrac{3}{\sqrt{12^2+4^2+3^2}}$$ $$\Rightarrow \dfrac{12}{13}, \dfrac{4}{13}, \dfrac{3}{13}$$
  • Question 3
    1 / -0
    Equation of plane passing through the points $$(2, 2, 1)$$, $$(9, 3, 6)$$ and perpendicular to the plane $$2x+ 6y + 6z-1= 0$$ is
    Solution
    Let $$ax+by+cz=1$$ be a plane
    Since, it is perpendicular to $$2x+6y+6z=1$$
    Therefore, $$2a+6b+6c=1$$      ....(1)
    and passes through $$(2,2,1)$$ & $$(9,3,6)$$
    Therefore, $$2a+2b+c=1$$        ....(2)
              and  $$9a+3b+6c=1$$      ....(3)
    Solving $$(1),(2)$$ and $$(3)$$ simultaneoulsly, we get
    $$a=\dfrac {3}{9}$$, $$b=\dfrac {4}{9}$$, $$c=-\dfrac {5}{9}$$
    Therfore, desired plane is $$3x+4y-5z-9=0$$

    Ans: C
  • Question 4
    1 / -0

    Directions For Questions

    Let $$A(1, 2, 3), B(0, 0, 1)$$ and $$C(-1, 1,1)$$ are the vertices of $$\Delta$$ $$ABC$$.

    ...view full instructions

    The equation of altitude through $$B$$ to side $$AC$$ is
    Solution
    Equation of line $$AC$$ is given by,
    $$\displaystyle \dfrac{x-1}{1+1}=\dfrac{y-2}{2-1}=\dfrac{z-3}{3-1}$$

    $$\displaystyle \dfrac{x-1}{2}=\dfrac{y-2}{1}=\dfrac{z-3}{2}=t$$ (say)

    So any point on line $$AC$$ is $$P(2t+1, t+2, 2t+3)$$ such that $$BP\perp AC $$

    $$\Rightarrow (2t+1-0)(2)+(t+2-0)(1)+(2t+3-1)(2)=0$$

    $$\Rightarrow 4t+2+t+2+4t+4=0\Rightarrow t=-\dfrac{8}{9}$$

    $$\therefore\displaystyle  P =\left(-\dfrac{7}{9},\dfrac{10}{9},\dfrac{11}{9} \right)$$

    Thus the equation altitude through $$B$$ to side $$AC$$, i.e. the equation of line $$BP$$ is,

    $$\displaystyle \dfrac{x-0}{-7/9}=\dfrac{y-0}{10/9}=\dfrac{z-1}{11/9-1}$$

    $$\displaystyle \dfrac{x}{-7}=\dfrac{y}{10}=\dfrac{z-1}{2}$$

    In vector form, it is given by, $$r=k+t(-7i+10j+2k)$$
  • Question 5
    1 / -0
    Given $$A(1,-1,0)$$; $$B(3,1,2)$$;$$C(2,-2,4)$$ and $$D(-1,1,-1)$$ which of the following points neither lie on $$AB$$ nor on $$CD$$
    Solution
    Given:- $$A(1,-1,0)$$; $$B(3,1,2)$$;$$C(2,-2,4)$$ and $$D(-1,1,-1)$$ 
    The equation of line $$AB$$ is given by $$r=i-j+t(2i+2j+2k)$$ or $$\dfrac{x-1}{2} = \dfrac{y+1}{2} = \dfrac{z}{2} $$ 
    The points $$(2,0,1)$$ and $$(0,-2,1)$$ lies on $$AB$$. 
    The equation of line $$CD$$ is given by $$r=2i-2j+4k+t(3i-3j+5k)$$ or $$ \dfrac{x-2}{3} = \dfrac{y+2}{-3} = \dfrac{z-4}{5}$$
    $$(2,-2,4)$$ lie on $$CD$$. 
    $$(2,2,4)$$ does not lie on any of the lines AB or CD.
    Hence, option A is correct.
  • Question 6
    1 / -0
    The vector equation of the line $$\displaystyle \frac { x-2 }{ 2 } =\frac { 2y-5 }{ -3 } ,z=-1$$ is $$\displaystyle \overrightarrow { r } =\left( 2\hat { i } +\frac { 5 }{ 2 } \hat { j } -\hat { k }  \right) +\lambda \left( 2\hat { i } -\frac { 3 }{ 2 } \hat { j } +x\hat { k }  \right) $$, where $$x$$ is equal to
    Solution
    The given line is $$\displaystyle\frac { x-2 }{ 2 } =\frac { 2y-5 }{ -3 } ,z=-1$$ $$\Rightarrow\displaystyle\frac { x-2 }{ 2 } =\frac { 2y-5 }{ -3 } =\frac { z+1 }{ 0 } $$
    This shows that the given line passes through point $$\left( 2,\displaystyle\frac { 5 }{ 2 } ,-1 \right) $$ and has direction ratios $$\left( 2, \displaystyle\frac { -3 }{ 2 } ,0 \right) $$
    So the direction cosines are
    $$\displaystyle\frac { 2 }{ \sqrt { { 2 }^{ 2 }+{ \left( -\dfrac { 3 }{ 2 }  \right)  }^{ 2 } }  } ,\frac { -\dfrac { 3 }{ 2 }  }{ \sqrt { { 2 }^{ 2 }+{ \left( -\dfrac { 3 }{ 2 }  \right)  }^{ 2 } }  } ,\frac { 0 }{ \sqrt { { 2 }^{ 2 }+{ \left( -\dfrac { 3 }{ 2 }  \right)  }^{ 2 } }  } $$ or $$\left( \displaystyle\frac { 4 }{ 5 } ,-\frac { 3 }{ 5 } ,0 \right) $$
    Thus the given line passes through the point having position vector $$\vec { a } =2\hat { i } +\displaystyle\frac { 5 }{ 2 } \hat { j } -\hat { k } $$ and is parallel to the vector $$\vec { b } =2\hat { i } -\displaystyle\frac { 3 }{ 2 } \hat { j } +0\hat { k } $$
    So, its vector equations is $$\vec { r } =2\hat { i } +\displaystyle\frac { 5 }{ 2 } \hat { j } -\hat { k } +\lambda \left( 2\hat { i } -\frac { 3 }{ 2 } \hat { j } +0\hat { k }  \right) $$
    Hence, $$x=0$$.
  • Question 7
    1 / -0
    If the points $$(0, 1, -2), (3$$, $$\lambda$$,$$ 1)$$ and ($$\mu$$, $$7, 4$$) are collinear, the point on the same line is
    Solution
    The direction vector using the first two points we get $$3i+(\lambda-1)j+3k$$. 
    Using the first and third point $$\mu i+6j+6k$$. 
    Since they are up to multiplication by a constant we get $$\lambda=4$$ and $$\mu=6$$.
     Hence direction vector is $$i+j+k$$. 
    Any point on the line is given by $$(0,1,-2)+t(1,1,1)$$. Plugging $$t=5$$ we get the point $$(5,6,3)$$.   

  • Question 8
    1 / -0
    A line makes angles $$\alpha$$, $$\beta $$, $$\gamma $$ with the positive directions of the axes of reference. The value of $$\cos 2\alpha +\cos 2\beta +\cos
    2\gamma$$ is
    Solution
    The value of $$\cos 2\alpha+\cos 2\beta+\cos 2\gamma$$
    $$=(1+\cos 2\alpha+1+\cos 2\beta+1+\cos 2\gamma)-3$$
    $$=2(\cos^2\alpha+\cos^2\beta+\cos^2\gamma)-3$$
    $$=2-3$$
    $$=-1$$
  • Question 9
    1 / -0
    The direction cosines of the line joining the points $$(2,3,-1)$$ and $$(3,-2,1) $$ are
    Solution
    Step 1:
    The direction ratios of the line joining these points are 
    $$x_2−x_1,y_2−y_1,z_2−z_1$$
    $$(i.e) (3−2),(-2−3),(1−(-1))$$
    $$\Longrightarrow$$ we get $$(1,-5,2)$$
    Step 2:
    Its direction cosines are :$$ \dfrac {1}{\sqrt {30}},-\sqrt{\cfrac 56},\sqrt{ \cfrac {2}{15}}$$
  • Question 10
    1 / -0
    Given $$A(1,-1,0)$$; $$B(3,1,2)$$; $$C(2,-2,4)$$ and $$D(-1,1,-1)$$ which of the following points neither lie on $$AB$$ nor on $$CD$$?
    Solution
    $$A(1,-1,0) , B(3,1,2), C(2,-2,4), D(-1,1,-1)\\ \vec { AB } = <3-1, 1-(-1), 2-0>$$ 
           $$= <2,2,2>$$ 
    $$\therefore \quad Equation\quad of\quad line\quad AB:\\ \dfrac { x-1 }{ 2 } =\dfrac { y-(-1) }{ 2 } =\dfrac { z-0 }{ 2 } \quad \Longrightarrow \quad \dfrac { x-1 }{ 2 } =\dfrac { y+1 }{ 2 } =\dfrac { z-0 }{ 2 }$$ 
    $$\vec { CD } = <-1-2, 1-(-2), -1-4>$$ 
            $$= <-3,3,-5>$$ 
    $$\therefore \quad Equation\quad of\quad line\quad CD:\\ \dfrac { x-2 }{ -3 } =\dfrac { y-(-2) }{ 3 } =\dfrac { z-4 }{ -5 } \quad \Longrightarrow \quad \dfrac { x-2 }{ -3 } =\dfrac { y+2 }{ 3 } =\dfrac { z-4 }{ -5 }$$ 
    By putting the values of points given in the choices in the equation of lines $$AB$$ and $$CD$$, $$(2,2,4)$$ is the point which neither lie on $$AB$$ nor on $$CD$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now