Let $$OA$$ and $$OB$$ be two lines with $$DC's{ l }_{ 1 },{ m }_{ 1 },{ n }_{ 1 }$$ and $$\displaystyle { l }_{ 2 },{ m }_{ 2 },{ n }_{ 2 }.$$
Let $$OA=OB=1.$$
Then co-ordinates of $$A$$ and $$B$$ are $$\displaystyle \left( { l }_{ 1 },{ m }_{ 1 },{ n }_{ 1 } \right) $$ and $$\displaystyle \left( { l }_{ 2 },{ m }_{ 2 },{ n }_{ 2 } \right) $$respectively.
Let $$OC Z$$ be the bisector of $$\angle AOB$$ such that $$C$$ is the mid-point of $$AB$$ and so its co-ordinates are
$$\displaystyle \left( \frac { { l }_{ 1 }+{ l }_{ 2 } }{ 2 } ,\frac { { m }_{ 1 }+{ m }_{ 2 } }{ 2 } ,\frac { { n }_{ 1 }+{ n }_{ 2 } }{ 2 } \right) $$
$$\therefore DR's$$ of $$OC$$ are $$\displaystyle \frac { { l }_{ 1 }+{ l }_{ 2 } }{ 2 } ,\frac { { m }_{ 1 }+{ m }_{ 2 } }{ 2 } ,\frac { { n }_{ 2 }+{ n }_{ 2 } }{ 2 } $$
$$\therefore$$ We have
$$\displaystyle OC=\sqrt { { \left( \frac { { l }_{ 1 }+{ l }_{ 2 } }{ 2 } \right) }^{ 2 }+{ \left( \frac { { m }_{ 1 }+{ m }_{ 2 } }{ 2 } \right) }^{ 2 }+{ \left( \frac { { n }_{ 1 }+{ n }_{ 2 } }{ 2 } \right) }^{ 2 } } $$
$$\displaystyle =\frac { 1 }{ 2 } \sqrt { \left( { l }_{ 1 }^{ 2 }+{ m }_{ 1 }^{ 2 }+{ n }_{ 1 }^{ 2 } \right) +\left( { l }_{ 2 }^{ 2 }+{ m }_{ 2 }^{ 2 }+{ n }_{ 2 }^{ 2 } \right) +2\left( { l }_{ 1 }{ l }_{ 2 }+{ m }_{ 1 }{ m }_{ 2 }+{ n }_{ 1 }{ n }_{ 2 } \right) } $$
$$\displaystyle =\frac { 1 }{ 2 } \sqrt { 2+2\cos { \theta } } \quad \left[ \therefore \cos { \theta } ={ l }_{ 1 }{ l }_{ 2 }+{ m }_{ 1 }{ m }_{ 2 }+{ n }_{ 1 }{ n }_{ 2 } \right] $$
$$\displaystyle =\frac { 1 }{ 2 } \sqrt { 2\left( 1+\cos { \theta } \right) } =\cos { \left( \frac { \theta }{ 2 } \right) } .$$
$$\therefore DCs$$ of $$\overrightarrow { OC } $$ are $$\displaystyle \frac { { l }_{ 1 }+{ l }_{ 2 } }{ 2\left( OC \right) } ,\frac { { m }_{ 1 }+{ m }_{ 2 } }{ 2\left( OC \right) } ,\frac { { n }_{ 1 }+{ n }_{ 2 } }{ 2\left( OC \right) } $$
i.e., $$\displaystyle \frac { { l }_{ 1 }+{ l }_{ 2 } }{ \frac { 2\cos { \theta } }{ 2 } } ,\frac { { m }_{ 1 }+{ m }_{ 2 } }{ \frac { 2\cos { \theta } }{ 2 } } ,\frac { { n }_{ 1 }+{ n }_{ 2 } }{ \frac { 2\cos { \theta } }{ 2 } } $$