Self Studies

Three Dimensional Geometry Test - 34

Result Self Studies

Three Dimensional Geometry Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Directions For Questions

    Let $$A$$ be the given point whose position vectors with reference to origin $$O$$ be $$ \overrightarrow{a}$$ and $$ \overrightarrow{ON}= \overrightarrow{n}$$ Let $$P$$ be any point such that $$\overline{OP}= \overrightarrow{r}$$ lies on the plane & passes through $$A$$ and orthogonal to $$ON$$. Then for any point $$P$$ lies on the plane then.$$\overrightarrow{AP} \perp  \overrightarrow{n}$$
    $$\displaystyle \therefore \overrightarrow{AP}.\ \overrightarrow{n}=0$$
    $$\displaystyle \Rightarrow \left ( \overrightarrow{OP}-\overrightarrow{OA} \right ).\overrightarrow{n}=0$$
    $$\displaystyle \Rightarrow  \overrightarrow{r}\cdot \overrightarrow{n}=\overrightarrow{a}.\overrightarrow{n}$$       $$($$Knows as scalar product form$$)$$
    $$\displaystyle \Rightarrow  \overrightarrow{r}\cdot \overrightarrow{n}=p,$$ where $$p$$ is the $$\perp$$er distance from origin to the plane.
    On the bases of above information answer the following questions

    ...view full instructions

    The Equation of the plane through a point $$\displaystyle  2\hat{i}-\hat{j}+4\hat{k} $$ & parallel to the plane $$\displaystyle \overline{r}.\left ( 2\hat{i}+4\hat{j}-7\hat{k} \right )=6$$ is
    Solution
    Equation of the plane parallel to the given plane is
    $$\displaystyle   \overline{r} \cdot \left ( 2\hat{i}+4\hat{j}-7\hat{k} \right )+\lambda=0$$...........................................................$$(i)$$
    This plane passes through the point with P.V. $$\displaystyle 2\hat{i}-\hat{j}-4\hat{k}$$
    $$\displaystyle \therefore \left ( 2\hat{i}-\hat{j}-4\hat{k} \right ) \cdot \left ( 2\hat{i}-\hat{j}-4\hat{k} \right )+\lambda=0$$
    $$\displaystyle  \Rightarrow 4-4+28+\lambda=0$$
    $$\displaystyle \therefore \lambda= -28 $$
    Putting $$\displaystyle  \lambda= -28 $$ in $$(i)$$ we get the required plane given
    by $$\displaystyle   \overline{r} \cdot \left ( 2\hat{i}+4\hat{j}-7\hat{k} \right )=28$$
    Hence (d) is the correct choice.
  • Question 2
    1 / -0
    If the foot of the perpendicular from the origin to a plane is $$\displaystyle \left ( a,b,c \right )$$, the equation of the plane is
    Solution
    Let $$\displaystyle P\left ( a,b,c \right )$$ be the foot of the  perpendicular from the origin to the plane, then direction ratios of
    $$OP$$ are $$\displaystyle a-0,b-0,c-0$$ i.e. $$\displaystyle a,b,c$$.
    So, the equation of the plane passing through $$\displaystyle P\left (
    a,b,c \right )$$ the direction ratios of the normal to which
    are $$\displaystyle a,b,c$$ is 
     $$\displaystyle a\left ( x-a \right )+b\left ( y-b \right )+c\left ( z-c \right )=0$$
    $$\displaystyle \Rightarrow$$   $$\displaystyle ax+by+cz=a^2+b^2+c^2$$
  • Question 3
    1 / -0
    Let $$N$$ be the foot of the perpendicular of length $$p$$, from the origin to a plane and $$l$$, $$m$$, $$n$$ be the direction cosines of $$ON$$, the equation of the plane is
    Solution
    given direction cosines of the line normal to the plane are $$ l, m, n$$
    $$\Rightarrow \hat{n} = l\hat{i}+m\hat{j}+n\hat{n}$$
    we know equation of plane whose distance is p from the origin is given by,
    $$ \vec{r} \cdot \hat{n} = p$$
    $$\Rightarrow lx + my + nz = p$$
    $$ where \  \vec {r} =x \hat{i}+y\hat{j}+z\hat{k}$$
  • Question 4
    1 / -0

    Directions For Questions

    Let $$A$$ be the given point whose position vectors with reference to origin $$O$$ be $$ \overrightarrow{a}$$ and $$ \overrightarrow{ON}= \overrightarrow{n}$$ Let $$P$$ be any point such that $$\overline{OP}= \overrightarrow{r}$$ lies on the plane & passes through $$A$$ and orthogonal to $$ON$$. Then for any point $$P$$ lies on the plane then.$$\overrightarrow{AP} \perp  \overrightarrow{n}$$
    $$\displaystyle \therefore \overrightarrow{AP}.\ \overrightarrow{n}=0$$
    $$\displaystyle \Rightarrow \left ( \overrightarrow{OP}-\overrightarrow{OA} \right ).\overrightarrow{n}=0$$
    $$\displaystyle \Rightarrow  \overrightarrow{r}\cdot \overrightarrow{n}=\overrightarrow{a}.\overrightarrow{n}$$       $$($$Knows as scalar product form$$)$$
    $$\displaystyle \Rightarrow  \overrightarrow{r}\cdot \overrightarrow{n}=p,$$ where $$p$$ is the $$\perp$$er distance from origin to the plane.
    On the bases of above information answer the following questions

    ...view full instructions

    The scalar product form of equation of plane $$\displaystyle \overline{r}=\left ( s-2t \right )\hat{i}+\left ( 3-t \right )\hat{j}+\left ( 2s-t \right )\hat{k}$$ is
    Solution
    Given $$\displaystyle \overrightarrow{r}=\left ( s-2t \right )\hat{i}+\left ( 3-t \right )\hat{j}+\left ( 2s-t \right )\hat{k}$$
    $$\displaystyle  \Rightarrow \overrightarrow{r}=3\hat{j}+s\left ( \hat{i}+2\hat{k} \right )+t\left ( -2\hat{i}+\hat{j}-\hat{k} \right )$$
    This equation represent the equation ofthe plane through a point having position vector $$\displaystyle \overrightarrow{a}=3\hat{j}$$ parallel to the vectors
     $$\displaystyle \overrightarrow{b}=\hat{i}+2\hat{k}$$ and $$\overrightarrow{c}=-2\hat{i}-\hat{j}+2\hat{k}$$.
    Normal Vector to the plane is given by
    $$\displaystyle \overrightarrow{n}=\left | \overrightarrow{b} \times \overrightarrow{c} \right |=2\hat{i}-5\hat{j}-\hat{k}$$
    Now using scalar product form of equation of plane
    $$\displaystyle  \overrightarrow{r} \cdot \overrightarrow{n}= \overrightarrow{a} \cdot \overrightarrow{n}$$
    $$\displaystyle  \Rightarrow \overrightarrow{r} \cdot \left ( 2\hat{i}-5\hat{j}-\hat{k} \right )= (3\hat{j})\left ( 2\hat{i}-5\hat{j}-\hat{k} \right )$$
    $$\displaystyle  \Rightarrow \overrightarrow{r} \cdot \left ( 2\hat{i}-5\hat{j}-\hat{k} \right )= -15 $$
    Hence choice (a) is correct.
  • Question 5
    1 / -0
    For what value of $$m$$, the points $$(3,5)$$, $$(m,6)$$ and $$\begin{pmatrix} \dfrac { 1 }{ 2 },\dfrac {15 }{ 2 } \end{pmatrix}$$ are collinear?
    Solution

    As the points are collinear, the slope of the line joining any two points, should be same as the slope of the line joining two other points. 
    Slope of the line passing through points $$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$ and $$\left( { x }_{ 2 },{ y }_{ 2 } \right)$$ $$ $$=$$ $$ $$\dfrac { { y }_{ 2 }-{ y }_{ 1 } }{ { x }_{ 2 }-x_{ 1 } } $$
    So, slope of the line joining $$ (3,5) , (m,6) = $$ Slope of the line joining $$ (3,5) $$ and $$\left  (\dfrac {1}{2}, \dfrac {15}{2}\right ) $$ 

    Therefore, $$ \dfrac { 6 - 5 }{ m - 3 } = \dfrac { \frac {15}{2} - 5 }{ \frac {1}{2} - 3 } $$
    $$\Rightarrow  \dfrac { 1 }{ m - 3 } = -1 $$

    $$\Rightarrow  m - 3 = -1 $$

    $$\Rightarrow  m = 2 $$

  • Question 6
    1 / -0
    If $${ l }_{ 1 },{ m }_{ 1 },{ n }_{ 1 }$$ and $${ l }_{ 2 },{ m }_{ 2 },{ n }_{ 2 }$$ are DCs of the two lines inclined to each other at an angle $$\theta$$, then the DCs of the internal bisector of the angle between these lines are
    Solution
    Let $$OA$$ and $$OB$$ be two lines with $$DC's{ l }_{ 1 },{ m }_{ 1 },{ n }_{ 1 }$$ and $$\displaystyle { l }_{ 2 },{ m }_{ 2 },{ n }_{ 2 }.$$
    Let $$OA=OB=1.$$
    Then co-ordinates of $$A$$ and $$B$$ are $$\displaystyle \left( { l }_{ 1 },{ m }_{ 1 },{ n }_{ 1 } \right) $$ and $$\displaystyle \left( { l }_{ 2 },{ m }_{ 2 },{ n }_{ 2 } \right) $$respectively.
    Let $$OC Z$$ be the bisector of  $$\angle AOB$$ such that $$C$$ is the mid-point of $$AB$$ and so its co-ordinates are 
    $$\displaystyle \left( \frac { { l }_{ 1 }+{ l }_{ 2 } }{ 2 } ,\frac { { m }_{ 1 }+{ m }_{ 2 } }{ 2 } ,\frac { { n }_{ 1 }+{ n }_{ 2 } }{ 2 }  \right) $$
    $$\therefore DR's$$ of $$OC$$ are $$\displaystyle \frac { { l }_{ 1 }+{ l }_{ 2 } }{ 2 } ,\frac { { m }_{ 1 }+{ m }_{ 2 } }{ 2 } ,\frac { { n }_{ 2 }+{ n }_{ 2 } }{ 2 } $$
    $$\therefore$$ We have
    $$\displaystyle OC=\sqrt { { \left( \frac { { l }_{ 1 }+{ l }_{ 2 } }{ 2 }  \right)  }^{ 2 }+{ \left( \frac { { m }_{ 1 }+{ m }_{ 2 } }{ 2 }  \right)  }^{ 2 }+{ \left( \frac { { n }_{ 1 }+{ n }_{ 2 } }{ 2 }  \right)  }^{ 2 } } $$
    $$\displaystyle =\frac { 1 }{ 2 } \sqrt { \left( { l }_{ 1 }^{ 2 }+{ m }_{ 1 }^{ 2 }+{ n }_{ 1 }^{ 2 } \right) +\left( { l }_{ 2 }^{ 2 }+{ m }_{ 2 }^{ 2 }+{ n }_{ 2 }^{ 2 } \right) +2\left( { l }_{ 1 }{ l }_{ 2 }+{ m }_{ 1 }{ m }_{ 2 }+{ n }_{ 1 }{ n }_{ 2 } \right)  } $$
    $$\displaystyle =\frac { 1 }{ 2 } \sqrt { 2+2\cos { \theta  }  } \quad \left[ \therefore \cos { \theta  } ={ l }_{ 1 }{ l }_{ 2 }+{ m }_{ 1 }{ m }_{ 2 }+{ n }_{ 1 }{ n }_{ 2 } \right] $$
    $$\displaystyle =\frac { 1 }{ 2 } \sqrt { 2\left( 1+\cos { \theta  }  \right)  } =\cos { \left( \frac { \theta  }{ 2 }  \right)  } .$$
    $$\therefore DCs$$ of $$\overrightarrow { OC } $$ are $$\displaystyle \frac { { l }_{ 1 }+{ l }_{ 2 } }{ 2\left( OC \right)  } ,\frac { { m }_{ 1 }+{ m }_{ 2 } }{ 2\left( OC \right)  } ,\frac { { n }_{ 1 }+{ n }_{ 2 } }{ 2\left( OC \right)  } $$
    i.e., $$\displaystyle \frac { { l }_{ 1 }+{ l }_{ 2 } }{ \frac { 2\cos { \theta  }  }{ 2 }  } ,\frac { { m }_{ 1 }+{ m }_{ 2 } }{ \frac { 2\cos { \theta  }  }{ 2 }  } ,\frac { { n }_{ 1 }+{ n }_{ 2 } }{ \frac { 2\cos { \theta  }  }{ 2 }  } $$
  • Question 7
    1 / -0
    If the projection of a line segment on $$x,y$$ and $$z$$ axes are respectively $$3,4$$ and $$5$$, then the length of the line segment is
    Solution
    Let $$l,m,n$$ be the  d.c's of  the given line segment $$PQ.$$
    $$\therefore l=\cos { \alpha  } ,m=\cos { \beta  } ,n=\cos { \gamma  } $$
    where $$\alpha ,\beta ,\gamma $$ are the angles which the line segment $$PQ$$ makes with the axes.
    Suppose length of line segment $$PQ=r.$$ 
    Thus, projection of line segment $$PQ$$ on x-axis $$=PQ \cos { \alpha  } ,=rl.$$
    Also the projection of line segment $$PQ$$ on x-axis $$=3$$  (given).
    $$\therefore lr=3$$
    Similarly, $$mr=4, nr=5.$$
    Now squaring and adding there equations, we get 
    $${ \left( lr \right)  }^{ 2 }+{ \left( mr \right)  }^{ 2 }+{ \left( nr \right)  }^{ 2 }=r^2[{ 3 }^{ 2 }+{ 4 }^{ 2 }+{ 5 }^{ 3 }]$$
    $$\Rightarrow { r }^{ 2 }\left( { l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 } \right) =9+16+25$$
    $$\Rightarrow { r }^{ 2 }=50\quad \quad \quad \quad \left[ \because { l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 }=1 \right] $$
    $$\Rightarrow r=\sqrt { 50 } =5\sqrt { 2 } $$
  • Question 8
    1 / -0
    Find the value of $$p$$ for which the points $$(-5,1)$$, $$(1,p)$$ and $$(4, -2)$$ are collinear.
    Solution
    The given points are $$A(-5,1)$$, $$B(1,p)$$ and $$C(4,-2)$$
    We have $$ (x_1= -5, y_1= 1), (x_2= 1, y_2= p)$$ and $$ (x_3= 4, y_3= -2)$$
    The given points $$A, B$$ and $$ C$$ are collinear
    Therefore, $$x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)=0$$
    $$\Rightarrow (-5)\cdot (p+2)+1\cdot (-2-1)+4\cdot (1-p)=0$$
    $$\Rightarrow (-5p-10-3+4-4p)=0$$
    $$\Rightarrow -9p= -9$$
    $$\Rightarrow p= -1$$
    Hence, $$p= -1$$
  • Question 9
    1 / -0
    The position vectors of point $$A$$ and $$B$$ are $$\hat { i } -\hat { j } +3\hat { k } $$ and $$3\hat { i } +3\hat { j } +3\hat { k } $$ respectively. The equation of a plane is $$r.\left( 5\hat { i } +2\hat { j } -7\hat { k }  \right) +9=0$$. The point $$A$$ and $$B$$
    Solution
    The position vectors of two given points are $$a=\hat { i } -\hat { j } +3\hat { k } $$ and $$b=3\hat { i } +3\hat { j } +3\hat { k } $$ and the equation of the given plane is $$r.\left( 5\hat { i } +2\hat { j } +7\hat { k }  \right) +9=0$$ or $$r.n+d=0.$$
    We have, $$a.n.+d=\left( \hat { i } -\hat { j } -\hat { k }  \right) .\left( 5\hat { i } +2\hat { j } -7\hat { k }  \right) +9=5-2-21+9<0$$
    and $$b.n+d=\left( 3\hat { i } +3\hat { j } +3\hat { k }  \right) .\left( 5\hat { i } +2\hat { j } +7\hat { k }  \right) +9=15+6-21+9>0$$
    So, the points  $$a$$ and $$b$$ are on the opposite sides of the plane. 
  • Question 10
    1 / -0
    Lines $$OA,OB$$ are drawn from $$O$$ with direction cosines proportional to $$(1,-2,-1),(3,-2,3).$$ Find the direction cosines of the normal to the plane $$AOB$$
    Solution
    Let $$ax+by+cz+d=0$$ be the plane, then $$O(0,0,0);A(1,-2,-1);B(3,-2,3)$$
    $$\Rightarrow d=0$$ and $$a-2b-c=0$$ also $$3a-2b+3c=0$$
    Putting $$c=(a-2b),$$ we get $$6a=8b$$
    $$\displaystyle a=\frac { 4 }{ 3 } b\therefore a=\frac { 4 }{ 3 } b,b=b$$ and $$\displaystyle c=-\frac { 2b }{ 3 } $$
    And the plane is $$\displaystyle b\left( \frac { 4 }{ 3 } x+y-\frac { 2 }{ 3 } z \right) =0$$
    $$4x+3y-2z=0$$
    The normal $$\pm \left( \overrightarrow { n } =4\hat { i } +3\hat { j } -2\hat { k }  \right) $$
    $$\displaystyle \hat { n } =\pm \left( \frac { 4 }{ \sqrt { 29 }  } \hat { i } +\frac { 3 }{ \sqrt { 29 }  } \hat { j } +\frac { 2 }{ \sqrt { 29 }  } \hat { k }  \right) $$
    D.C' s of normal vector $$\displaystyle \left< \pm \frac { 4 }{ \sqrt { 29 }  } \pm \frac { 3 }{ \sqrt { 29 }  } \pm \frac { -2 }{ \sqrt { 29 }  }  \right> $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now