Self Studies

Three Dimensional Geometry Test - 39

Result Self Studies

Three Dimensional Geometry Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A straight line passes through (1, -2, 3) and perpendicular to the plane $$2x + 3y - z = 7$$.Find the direction ratios of normal to plane.  
    Solution
    $$\text{concept: for any plane}\,ax+by+cz+d=0,\,\text{normal vector to this plane is}\,a\hat{i}+b\hat j+c\hat k$$

    the normal vector of the plane $$2x+3y-z=7$$ is 
    $$2\hat{i}+3\hat{j}-\hat{k}$$
    so the direction ratios of normal to plane are
    $$<2,3,-1>$$
  • Question 2
    1 / -0
    What are the direction ratios of the line if it passes through the intersection of the planes $$x=3z+4$$ and $$y=2z-3$$?
    Solution
    Equations  of the planes are $$ x=3z+4$$ and $$y=2z−3$$
    $$\therefore$$ The equation of the plane passing through the line of intersection of these planes is
    $$ x=3z+4$$ and $$y=2z−3$$
    Thus The direction Ratios of the equation passes through intersection of the planes is $$(3,2,1)$$



  • Question 3
    1 / -0
    What is the sum of the squares of direction cosines of the line joining the points (1, 2, -3) and (-2, 3, 1) ?
    Solution
     the sum of the squares of direction cosines of the line is always 1

  • Question 4
    1 / -0
    Direction ratios of the line which is perpendicular to the lines with direction ratios $$-1,2,2$$ and $$0,2,1$$ are
    Solution
    Let $$l,m,n$$ be the direction ratios of the required line

    Given : $$l,m,n$$ are perpendicular to $$-1,2,2$$

    So, their dot product will be zero

    $$\implies l(-1)+m(2)+n(2)=0$$

    $$\implies -l+2m+2n=0$$ .... $$(i)$$

    Also, $$l,m.n$$ are perpendicular to $$0,2,1$$

    $$\implies 2m+n=0$$

    $$\implies m=-\dfrac{n}{2}$$

    Substituting $$m$$ in $$(i)$$ we get

    $$-l-n+2n=0 \implies l=n$$

    So, the direction ratios are in proportion to $$n:-\dfrac{n}{2}:n$$

    Simplifying we get $$2,-1,2$$

    Thus, the direction ratios are $$2,-1,2$$.
  • Question 5
    1 / -0
    The direction cosines of the straight line given by the planes $$x=0$$ and $$z=0$$ are
    Solution
    Given, $$x=z=0$$
    It represents Z-axis
    $$\therefore$$ Direction cosines$$=(0,1,0)$$
  • Question 6
    1 / -0
    If $$(1, -2, -2)$$ and $$(0, 2, 1)$$ are direction ratios of two lines, then the direction cosines of a perpendicular to both the lines are
    Solution
    Let a vector $$ \vec { A } =\hat { i } -2\hat { j } -2\hat { k } $$
    $$\vec { B } =2\hat { j } +\hat { k } $$
    So, vector perpendicular to $$ \vec { A } \& \vec { B }$$ will be
    $$=\vec { A } \times \vec { B } $$$$=\left| \begin{matrix} \hat { i }  & \hat { j }  & \hat { k }  \\ 1 & -2 & -2 \\ 0 & 2 & 1 \end{matrix} \right| $$
    $$=2\hat { i } -1\hat { j } +2\hat { k } $$
    So, the direction ration of the perpendicular vector or line are (2,-1,2)
    Direction cosines are $$\cfrac { 2 }{ \sqrt { { 2 }^{ 2 }+{ \left( -1 \right)  }^{ 2 }+{ 2 }^{ 2 } }  } ,\cfrac { -1 }{ \sqrt { { 2 }^{ 2 }+{ \left( -1 \right)  }^{ 2 }+{ 2 }^{ 2 } }  } ,\cfrac { 2 }{ \sqrt { { 2 }^{ 2 }+{ \left( -1 \right)  }^{ 2 }+{ 2 }^{ 2 } }  } $$
    or $$\left( \cfrac { 2 }{ 3 } ,\cfrac { -1 }{ 3 } ,\cfrac { 2 }{ 3 }  \right) $$
  • Question 7
    1 / -0
    The points, whose position vectors are $$60i + 3j, 40i - 8j$$ and $$ai - 52j$$ collinear, if
    Solution
    Let $$60i +3j,40i-8j,ai-52j$$ be the position vectors of $$A(\overline a)$$,$$B(\overline b)$$ and $$C(\overline c)$$
    For points A,B,C to be collinear 
    $$\overline{AB}= \lambda \overline{BC}$$,For some scalar $$\lambda$$
    $$\therefore$$ $$\overline b - \overline a =\lambda ( \overline c - \overline b)$$
    $$(40i - 8j) - (60i + 3j) = \lambda[(ai - 52j) - (40i - 8j)]$$
    $$-20 = \lambda (a - 40)$$ and $$-11 = -44\lambda$$
    $$\Rightarrow a - 40 = \dfrac {-20}{\lambda}$$ and $$\lambda = \dfrac {1}{4}$$
    $$\Rightarrow a = 40 - \dfrac {20}{1} \times 4 = -40$$.
  • Question 8
    1 / -0
    The direction ratios of the line perpendicular to the lines with direction ratios $$ 1, -2, -2 $$ and $$ 0, 2, 1 $$ are
    Solution
    Direction ratios of two lines: $$<1,-2,-2>$$ and $$<0,2,1>$$

    Let direction ratio of required line is $$<l,m,n>$$

    Since, lines are perpendicular,

    So, $$l-2m-2n=0$$ and $$2m+n=0$$
    $$\cfrac{l}{-2+4}=\cfrac{m}{0-1}=\cfrac{n}{2-0}$$

    So, Reuired direction ratio is $$<2,-1,2>$$

    Hence, A is the correct option.
  • Question 9
    1 / -0
    The equation of the plane perpendicular to the $$yz-$$ plane and passing through the point $$(1,-2,4)$$ and $$(3,-4,5)$$ is 
    Solution
    Plane is perpendicular to yz plane
    So it have x-axis as parallel to it
    Find a vector lying in the plane using two given point as-
    $$\vec { 5 }=  (3-1)\hat { i } +(-4-(-2)\hat { j } +(5-A)\hat { k } $$
    $$\vec { 5 } = 2\hat { i } -2\hat { j } +\hat { k } $$
    parallel vector, $$\vec { p } =1.\hat { i } +0.\hat { j } +0.\hat { k } $$
    So normal to the plane,
    $$\vec { N } =\vec { S } \times \vec { P } $$
    $$=\begin{vmatrix} \hat { i }  & \hat { \quad j }  & \hat { \quad k }  \\ 2 & \quad -2 & \quad 1 \\ 1 & \quad 0 & \quad 0 \end{vmatrix}$$
    $$=\hat { j } +2\hat { k } $$
    equation of plane using a point and normal,
    $$\Rightarrow 0.(x-1)+1.(y-(-2)+2.(z-4)=0$$
    $$\Rightarrow y+2+2z-8=0$$
    $$\Rightarrow y+2z=6$$

  • Question 10
    1 / -0
    The direction cosines $$l,m,n$$ of two lines are connected by the relations $$l+m+n=0$$, $$lm=0$$, then the angle between them is
    Solution
    Given, $$l+m+n=0.....(i)$$

    And $$lm=0$$

    Either, $$m=0$$ or $$l=0$$

    If $$l=0$$, then put in eq (i) we get $$m=-n$$

    $$\therefore$$ Direction ratios are $$0.-n,n$$ i.e., $$0,-1,1$$

    If $$m=0$$, then put in eq.(i) we get $$l=-n$$

    $$\therefore$$ Direction ratios are $$-n,0,n$$ i.e.,$$-1,0,1$$

    $$\cos { \theta  } =\cfrac { 0(-1)+(-1)\times 0+1\times 1 }{ \sqrt { { (0) }^{ 2 }+{ (-1) }^{ 2 }+{ (1) }^{ 2 } } \sqrt { { (-1) }^{ 2 }+{ (0) }^{ 2 }+{ (1) }^{ 2 } }  } =\cfrac { 1 }{ 2 } $$

    $$\Rightarrow \theta =\cfrac { \pi  }{ 3 } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now