Self Studies

Three Dimensional Geometry Test - 46

Result Self Studies

Three Dimensional Geometry Test - 46
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$\overrightarrow{p}=3a{x}^{2}\hat{i}-2\left(x-1\right)\hat{j}$$ and $$\overrightarrow{q}=b\left(x-1\right)\hat{i}+x\hat{j}$$. If $$ab<0$$ then $$\overrightarrow{p}$$ and $$\overrightarrow{q}$$ are parallel for 
    Solution
    $$\overrightarrow{p},\overrightarrow{q}$$ are parallel if $$\overrightarrow{p}\times \overrightarrow{q}=0$$  and $$\overrightarrow{p}\times \overrightarrow{q}$$
    $$=\left|\begin{matrix}\hat{i}& \hat{j} &  \hat{k}\\ 3a{x}^{2} &-2\left(x-1\right)&0   \\ b\left(x-1\right) & x & 0 \end{matrix}\right|$$
    $$=\hat{i}\left(0-0\right)-\hat{j}\left(0-0\right)+\hat{k}\left(3a{x}^{3}+2b{\left(x-1\right)}^{2}\right)$$
    $$=\hat{k}\left(3a{x}^{3}+2b{\left(x-1\right)}^{2}\right)$$
    $$\left|\overrightarrow{p}\times\overrightarrow{q}\right|=3a{x}^{3}+2{\left(x-1\right)}^{2}b=f\left(x\right)$$
    $$f\left(0\right)=2b$$  , $$f\left(1\right)=3a$$  
    $$f\left(0\right).f\left(1\right)=2b\times 3a=6ab<0$$ (given)
  • Question 2
    1 / -0
    If $$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$$ are non-coplanar and $$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\alpha\overrightarrow{d}$$ ,  $$\overrightarrow{b}+\overrightarrow{c}+\overrightarrow{d}=\beta\overrightarrow{a}$$ then $$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}+\overrightarrow{d}=$$
    Solution
    $$\overrightarrow{a} +\overrightarrow{b} +\overrightarrow{c}  =\alpha\overrightarrow{d}  \left(given\right)$$
    $$\overrightarrow{b} +\overrightarrow{c} +\overrightarrow{d}  =\beta\overrightarrow{a} \left(given\right)$$
    Eliminating $$\overrightarrow{d}$$
    $$\Rightarrow \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\alpha\overrightarrow{d} $$
    $$\Rightarrow \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\alpha\left(\beta\overrightarrow{a}-\overrightarrow{b}-\overrightarrow{c}\right)$$
    $$\Rightarrow \left(1-\alpha\beta\right)\overrightarrow{a}+\left(1+\alpha\right)\overrightarrow{b}+\left(1+\alpha\right)\overrightarrow{c}=0$$
     since $$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$$ are non-coplanar
    $$\Rightarrow 1-\alpha\beta=0, 1+\alpha=0$$
    $$\Rightarrow \alpha\beta=1, \alpha=-1$$
    $$\Rightarrow \alpha=-1 $$
    $$\therefore \beta=-1$$
    $$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\alpha\overrightarrow{d}=-\overrightarrow{d}$$
    $$\therefore \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}+\overrightarrow{d}=0$$
  • Question 3
    1 / -0
    If the angle between the line $$ x = \dfrac { y - 1 } { 2 } = \dfrac { z - 3 } { \lambda } $$ and the plane $$ x + 2 y + 3 z = 4 \text { is } \cos ^ { - 1 } \left( \sqrt { \frac { 5 } { 14 } } \right) $$, then $$ \lambda $$ equals:-
    Solution
    We have,
    $$x = \dfrac{{y - 1}}{2} = \dfrac{{z - 3}}{\lambda }\,\,\,\,\quad x + 2y + 3z = 4$$

    $$ = {\cos ^{ - 1}}\left( {\dfrac{{\sqrt 5 }}{{14}}} \right)\,\,\, \quad \lambda  = ?$$

    $$ = \cos  = \dfrac{{\sqrt 5 }}{{14}}$$

    $$\theta  = {\sin ^{ - 1}}\sqrt {1 - \dfrac{5}{{14}}}  = {\sin ^{ - 1}}\left( {\dfrac{{\sqrt 9 }}{{14}}} \right)$$

    $$ \sin  \theta =\sqrt { \dfrac { 9 }{ { 14 } }  }$$

    $$ \Rightarrow\dfrac { { 1+4+3\lambda  } }{ { \sqrt { 5+{ \lambda ^{ 2 } } } \sqrt { 14 }  } }  =  \dfrac { 3 }{ { \sqrt { 14 }  } } $$..................obtained from the cross product relation of two normal vectors of the line and the plane.

    $$\Rightarrow \dfrac { { 5+3\lambda  } }{ { \sqrt { 5+{ \lambda ^{ 2 } } } \sqrt { 14 }  } } =\dfrac{3}{\sqrt {14}} $$

    $$ \Rightarrow 25+9{ \lambda ^{ 2 } }+30\lambda =9\left( { 5+\lambda^2  } \right)   $$

    $$ \Rightarrow 25 + 30\lambda =45  $$

    $$20 = 30\lambda $$

    $$\lambda  = \dfrac{2}{3}$$
    Then,

    Option $$C$$ is correct answer.
  • Question 4
    1 / -0
    $$A=(-1, 2, -3), B=(5, 0, -6), C=(0, 4, -1)$$ are the vertices of a triangle. The d.c's of the internal bisector of $$\angle$$BAC are?
    Solution
    Here,
    $$\begin{array}{l} AB=\sqrt { { { \left( { 5+1 } \right)  }^{ 2 } }+{ { \left( { 0-2 } \right)  }^{ 2 } }+{ { \left( { -6+3 } \right)  }^{ 2 } } } =\sqrt { 49 } =7 \\ AC=\sqrt { { { \left( { 0+1 } \right)  }^{ 2 } }+{ { \left( { 4-2 } \right)  }^{ 2 } }+{ { \left( { 1+3 } \right)  }^{ 2 } } } =\sqrt { 9 } =3 \end{array}$$
    by geometry , the bisector of$$\angle BAC$$
    will divide the side BC in the ration AB:AC i.e.,in the ratio $$7:3$$ internally .Let the bisector of $$\angle BAC$$ , meets the side BC at point D.
    Therefore,D divides BC in the ratio $$7:3$$
    coordinates of D are 
    $$\begin{array}{l} \left( { \dfrac { { 7\times 0+3\times 5 } }{ { 7+3 } } ,\dfrac { { 7\times 4+3\times 0 } }{ { 7+3 } } ,\dfrac { { 7\times \left( { -1 } \right) +3\times \left( { -6 } \right)  } }{ { 7+3 } }  } \right)  \\ \left( { \dfrac { 3 }{ 2 } ,\dfrac { { 14 } }{ 5 } ,-\dfrac { 5 }{ 3 }  } \right)  \end{array}$$
    Therefore, direction ratio of the bisector AD are 
    $$\dfrac{3}{2} - \left( { - 1} \right),\dfrac{{14}}{5} - 2,\dfrac{{ - 5}}{2} + 3\,\,\,\,i.e.\frac{5}{2},\dfrac{4}{5},\dfrac{1}{2}$$
    Hence , direction cosines of the bisector AD are  
    $$\begin{array}{l} \dfrac { { \dfrac { 5 }{ 2 }  } }{ { \sqrt { { { \left( { \dfrac { 5 }{ 2 }  } \right)  }^{ 2 } }+{ { \left( { \dfrac { 4 }{ 5 }  } \right)  }^{ 2 } }+{ { \left( { \dfrac { 1 }{ 2 }  } \right)  }^{ 2 } } }  } }  \\ \dfrac { { \dfrac { 4 }{ 5 }  } }{ { \sqrt { { { \left( { \dfrac { 5 }{ 2 }  } \right)  }^{ 2 } }+{ { \left( { \dfrac { 4 }{ 5 }  } \right)  }^{ 2 } }+{ { \left( { \dfrac { 1 }{ 2 }  } \right)  }^{ 2 } } }  } }  \\ \dfrac { { \dfrac { 1 }{ 2 }  } }{ { \sqrt { { { \left( { \dfrac { 5 }{ 2 }  } \right)  }^{ 2 } }+{ { \left( { \dfrac { 4 }{ 5 }  } \right)  }^{ 2 } }+{ { \left( { \dfrac { 1 }{ 2 }  } \right)  }^{ 2 } } }  } }  \\ \dfrac { { 25 } }{ { \sqrt { 714 }  } } ,\dfrac { 8 }{ { \sqrt { 714 }  } } ,\dfrac { 5 }{ { \sqrt { 714 }  } }  \end{array}$$

  • Question 5
    1 / -0
    If the points whose position vectors are $$2i+j+k, 6i-j+2k$$ and $$14i-5j+pk$$ are collinear, then the value of p is?
    Solution
    $$Positive\, \, vector\, \, are\, \, \, 2i+j+k,6\hat { i } +\hat { j } +2\hat { k }  \\ and\, \, 4i-5j+pk\, \, are\, \, collinear\, \, then\, \, P=2 \\ if\, \, three\, \, position\, \, vectors\, \, are\, \, collinear\, \, then,\, \, its\, \, { { determinantsis } }\left( 0 \right)  \\ \Rightarrow \left| \begin{matrix} 2\, \, \, \, \, \, \, 1\, \, \, \, \, \, \, 1 \\ 6\, \, \, \, -1\, \, \, \, \, \, 2 \\ 14\, \, -5\, \, \, \, P \\  \end{matrix} \right| =0 \\ \Rightarrow 2\left( { -P+10 } \right) -1\left( { 6P-28 } \right) +\left( { -30+14 } \right) =0 \\ \Rightarrow -2P+20-6P+28-16=0 \\ \Rightarrow -8P+32=0 \\ \therefore P=4\, $$
  • Question 6
    1 / -0
    The projection of a vector on three coordinate axes are $$ 6,-3, 2$$ respectively. The direction cosines of the vector are
    Solution
    If $$\cos{\alpha},\cos{\beta},\cos{\gamma}$$ are the direction cosines then $$r\cos{\alpha}=6,  r\cos{\beta}=-3, r\cos{\gamma}=2$$
    Squaring ,$${r}^{2}{\cos}^{2}{\alpha}=36,{r}^{2}{\cos}^{2}{\beta}=9,{r}^{2}{\cos}^{2}{\gamma}=4$$
    $$ \Rightarrow {r}^{2}{\cos}^{2}{\alpha}+{r}^{2}{\cos}^{2}{\beta}+{r}^{2}{\cos}^{2}{\gamma}=\left(36+9+4\right)=49$$
    $$\Rightarrow  {r}^{2}\left({\cos}^{2}{\alpha}+{\cos}^{2}{\beta}+{\cos}^{2}{\gamma}\right)=49$$
    $$\Rightarrow  {r}^{2}=49 , r=7$$
    $$\therefore $$ the direction cosines are $$\dfrac{6}{7},\dfrac{-3}{7},\dfrac{2}{7}$$
  • Question 7
    1 / -0
    The vector form of the equation of the line passing through points $$(3,4, 7)$$ and $$(5,1,6)$$ is-
    Solution

    We have,

    Given points are $$\left( 3,4,7 \right)\,\,and\,\,\left( 5,1,6 \right)$$.

    We know that,

    Vector equation of a line passing through the two points with position vectors $$\overrightarrow{a}$$ and $$\overrightarrow{b}$$ is

    $$\overrightarrow{r}=\overrightarrow{a}+\lambda \left( \overrightarrow{b}-\overrightarrow{a} \right)$$

    Let the given points are $$A\left( 3,4,7 \right)\,\,and\,\,\left( 5,1,6 \right)$$

    Now,

    Equation of vector,

    $$ \overrightarrow{r}=\left( 3\overrightarrow{i}+4\overrightarrow{j}+7\overrightarrow{k} \right)+\lambda \left( 5\overrightarrow{i}+\overrightarrow{j}+6\overrightarrow{k}-3\overrightarrow{i}-4\overrightarrow{j}-7\overrightarrow{k} \right) $$

    $$ \overrightarrow{r}=\left( 3\overrightarrow{i}+4\overrightarrow{j}+7\overrightarrow{k} \right)+\lambda \left( 2\overrightarrow{i}-3\overrightarrow{j}-\overrightarrow{k} \right) $$

    Hence, this is the answer.

  • Question 8
    1 / -0
    If two lines $$x=2y+3, z=y+1$$ and $$x=4y+1, z=3y+2$$ makes an angle $$\theta$$ with each other, then $$\cos\theta$$ equals
  • Question 9
    1 / -0
    The line perpendicular to the plane $$2x-y+5z=4$$ passing through the point $$(-1,0,1)$$ is ?
    Solution
    $$\begin{array}{l} Po{ { int } }\, \, A\left( { -1,0,1 } \right) \, and\, \, \, B\left( { 2,-1,5 } \right)  \\ So,\, \, equation\, \, of\, \, line. \\ \frac { { x+1 } }{ 2 } =-y=\frac { { z-1 } }{ 5 }  \\ Option\, \, \, C\, \, is\, \, correct\, \, answer. \end{array}$$
  • Question 10
    1 / -0
    If a straight line makes an angle $${ cos }^{ -1 }\left( \frac { 1 }{ \sqrt { 3 }  }  \right) $$  with each of the positive $$x, y$$ and $$z$$-axis, a vector parallel to that line is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now