Self Studies

Three Dimensional Geometry Test - 47

Result Self Studies

Three Dimensional Geometry Test - 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    ABC is a triangle where $$A = ( 2,3,5 ) , B = ( - 1,2,2 )$$ and $$C (\lambda,5 , \mu )$$ if the median through A is equally inclined to the positive axis then $$\lambda + \mu$$ is 
    Solution
    $$AD$$ is median          $$D\left( {\frac{{\lambda  - 1}}{2},\frac{7}{2},\frac{{\mu  + 2}}{2}} \right)$$
    $$\overrightarrow {AD}  = \left( {\frac{{\lambda  - 1}}{2} - 2,\frac{7}{2} - 3,\frac{{\mu  + 2}}{2} - 5} \right)$$
    $$\overrightarrow {AD} $$ is equally in lined.   $$ \therefore$$paralle to $$(1,1,1)$$
    $$\begin{array}{l} \frac { { \lambda -5 } }{ 2 } =\frac { 1 }{ 2 } =\frac { { \mu +8 } }{ 2 }  \\ \lambda =6 \\ \mu =9 \\ \lambda +\mu =15 \end{array}$$
    Then,
    Option $$C$$ is correct answer.
  • Question 2
    1 / -0
    A line makes angles $$\alpha, \beta, \gamma$$ with the positive direction of the axes of reference. The value of $$\cos{2\alpha}+\cos{2\beta}+\cos{2\gamma}$$ is
    Solution
    $$\cos ^{2}\alpha+\cos^{2}\beta+\cos^{2}r=1$$
    $$\cos 2\alpha+\cos ^{2}\beta+\cos 2r=2\cos^{2}\alpha-1+2\cos^{2}\beta-1+2\cos^{2}r-1$$
    $$=2(\cos^{2}\alpha+\cos^{2}\beta+\cos^{2}r)-3$$
    $$=2(1)-3$$
    $$=-1$$



  • Question 3
    1 / -0
    Projection of a vector on $$3$$ coordinate axes are $$6, - 3, 2$$ respectively. Then DC's of vector are-
    Solution
    Projection of a vector on coordinate axis are $$X_2-X_1, Y_2-Y_1, Z_2-Z_1$$ 
    $$X_2-X_1=6, Y_2-Y_1=-3, Z_2-Z_1=2$$
    $$\sqrt {{{\left( {{X_2} - {X_1}} \right)}^2} + {{\left( {{Y_2} - {Y_1}} \right)}^2} + {{\left( {{Z_2} - {Z_1}} \right)}^2}}  = \sqrt {36 + 9 + 4}  = 7$$
    The Direction cosines of the vector are $$\dfrac{6}{7},\dfrac{{ - 3}}{7},\dfrac{2}{7}$$
  • Question 4
    1 / -0
    If the foot of the perpendicular from $$(0,0,0)$$ to a plane is $$P(1,2,2)$$. Then, the equation of the plane is
    Solution
    Equation of normal $$\Rightarrow \ \hat i+2\hat j+2\hat k$$
    equation of plane $$\Rightarrow $$
    $$(x-1)1+(xy-2)2+(z-2)2=0$$
    $$x-1+2y-4+2z-4=0$$
    $$x+2y+2z-9=0$$

  • Question 5
    1 / -0
    $$P\left(1,1,1\right)$$ and $$Q\left(\lambda,\lambda,\lambda\right)$$ are two points in the space such that $$PQ=\sqrt{27},$$ the value of $$\lambda$$ can be 
    Solution
    $${PQ}^{2}={\left(\lambda-1\right)}^{2}+{\left(\lambda-1\right)}^{2}+{\left(\lambda-1\right)}^{2}$$
    $$\Rightarrow\,3{\left(\lambda-1\right)}^{2}=27$$
    $$\Rightarrow\,{\left(\lambda-1\right)}^{2}=9$$
    $$\Rightarrow\,\lambda-1=\pm\,3$$
    $$\Rightarrow\,\lambda=1\pm\,3$$
    $$\Rightarrow\,\lambda=1+3,$$or $$\,1-3$$
    $$\therefore\,\lambda=4,$$ or $$-2$$

  • Question 6
    1 / -0
    If the points $$\bar a + \bar b,\bar a - \bar b,\bar a + k\bar b$$ are collinear, then  
    Solution
    As the $$3$$ point should be collinear area of triangle termed by then should be zero

    considering $$2$$ direction to be $$(\bar{a}+\bar{b})-(\bar{a}-\bar{b})=2\bar{b}$$
    & $$(\bar{a}+\bar{b})-(\bar{a}+k\bar{b})=(1-k)\bar{b}$$

    $$(2\bar{b})\times (1-k)\bar{b}=0$$

    this will be for any value of $$k$$ as cross produced of $$2$$ linear vector $$=0$$


  • Question 7
    1 / -0
    If the points $$(\alpha, - 1), (2, 1)$$ and $$(4, 5)$$ are collinear, then find $$\alpha $$ by vector method.
    Solution
    If there points are collinear then vectors from one to another will have scalar triple produced $$0$$.Point $$\left(\alpha,-1\right), \left(2,1\right), \left(4,5\right)$$
    $$\left( 2-\alpha  \right) \hat { i } +2\hat { j } -\bar { A }$$
    $$2\hat { i } +4\hat { j } -\bar { B }$$
    $$\left( 4-\alpha  \right) \hat { i } +6\hat { j } -\bar { C }$$
    $$ \bar { A } .\left( \bar { B } \times \bar { C }  \right) =0$$
    $$\left( \left( 2-\alpha  \right) \hat { i } +2\hat { j }  \right) \left( 2\hat { i } +4\hat { j }  \right) \times \left( \left( 4-\alpha  \right) \hat { i } +6\hat { j }  \right) \\ \left( \left( 2-\alpha  \right) \hat { i } +2\hat { j }  \right) .\left[ 12\hat { k } -16\hat { k } +4\alpha \hat { k }  \right] =0$$
    $$4\alpha =4$$
     $$\alpha =1$$
    Also the direction vector will be proportion
    $$\left( 2-\alpha,2 \right)=\lambda\left( 4-2.5-1\right)$$
    $$\left( 2-\alpha,2 \right)=\lambda\left( 2,4\right)$$
    $$\lambda=\dfrac{1}{2}$$ as $$2=4\lambda$$
    $$2-\alpha=1$$
    $$\therefore \alpha=1$$

  • Question 8
    1 / -0
    $$A(2,3,7),B(-1,3,2)$$ and $$C(q,5,r)$$ are the vertices of $$\Delta ABC$$. If the median through A is equally inclined to the coordinate axes then the coordinates of the vertex C is
    Solution

  • Question 9
    1 / -0
    A line $$AB$$ in three-dimensional space males angles $${45}^{o}$$ and $${120}^{o}$$ with the positive x-axis and the positive y-axis respectively. If $$AB$$ makes an acute angle $$\theta$$ with the positive z-axis, then $$\theta$$ equal
    Solution
    'l', 'm', 'n' be the Direction cosine of the line 
    $$ l = cos \alpha  = cos45^{\circ} = \dfrac{1}{\sqrt{2}}$$
    $$ m = cos\beta  = cos120^{\circ} = \dfrac{-1}{2}$$
    $$ n = cos\theta $$
    we know
    $$ l^{2}+m^{2}+n^{2} = 1 $$
    $$ \Rightarrow d\dfrac{1}{2}+\dfrac{1}{4}+cos^{2}\theta  = 1 $$
    $$ \Rightarrow cos^{2}\theta = 1-\dfrac{1}{2}- \dfrac{1}{4}$$
    $$ \Rightarrow cos^{2}\theta  = \dfrac{1}{4}$$
    $$ \Rightarrow cos = \dfrac{1}{2}$$
    $$ \therefore \theta  = 60^{\circ}$$ 

  • Question 10
    1 / -0
    The Cartesian equation of line $$6x - 2 = 3y + 1 = 2z - 2$$ is given by

    Solution
    Solution -

    $$ 6x-2 = 3y+1 = 2z-2 $$

    $$ \dfrac{6x-2}{6} = \dfrac{3y+1}{6} = \dfrac{2z-2}{6} $$

    $$ \dfrac{x-\dfrac{1}{3}}{1} = \dfrac{y+\dfrac{1}{3}}{2} = \dfrac{z-1}{3} $$
    DR $$ (1,2,3) $$

    Point passing through line $$(1/3,-1/3,1) $$

    $$ \dfrac{3x-1}{3} = \dfrac{3y+1}{6} = \dfrac{z-1}{3} $$

    A is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now