Self Studies

Three Dimensional Geometry Test - 48

Result Self Studies

Three Dimensional Geometry Test - 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The direction ratios of the joining $$A(1,\,2,\ 1)$$ and $$(2,\ 1,\ 2)$$ are
    Solution
    We have given points are:-
    $$A\left( {1,2,1} \right)$$
    $$B\left( {2,1,2} \right)$$
    Now,
    $$\overrightarrow {BA}  = \left( {1 - 2} \right)\widehat i + \left( {2 - 1} \right)\widehat j + \left( {1 - 2} \right)\widehat k$$
    $$ =  - \widehat i + \widehat j - \widehat k$$
    direction ratio are 
    $$a=-1$$
    $$b=1$$
    $$c=-1$$
    Hence, 
    option $$B$$ is correct.
  • Question 2
    1 / -0
    The direction ratios of $$AB$$ are $$- 2, 2, 1$$ . If coordinates of A are $$( 4,1,5 )$$ and $$l( A B ) = 6$$ , then coordinates of $$ B $$ ?
    Solution

  • Question 3
    1 / -0
    If $$\bar {a}, \bar {b}$$ and $$\bar {c}$$ are non-zero non collinear vectors and $$\theta(\neq 0 , \pi)$$ is the angle between $$\bar {b}$$ and $$\bar {c}$$ if $$(\bar {a}\times \bar {b}) \times \bar {c}=\dfrac {1}{2} |\bar {b}|\bar {c}|\bar {a}$$. then $$\sin \theta =$$
    Solution
    We have
    $$\left( {\overrightarrow a  \times \overrightarrow b } \right) \times \overrightarrow c  = \frac{1}{2}\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\overrightarrow a $$
    $$\overrightarrow c  \times \left( {\overrightarrow a  \times \overrightarrow b } \right) = \frac{1}{2}\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\overrightarrow a $$
    $$ - \left[ {\left( {\overrightarrow c .\overrightarrow b } \right)\overrightarrow a  - \left( {\overrightarrow c .\overrightarrow a } \right)\overrightarrow b } \right] = \frac{1}{2}\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\overrightarrow a $$
    $$\left( {\overrightarrow c .\overrightarrow a } \right)\overrightarrow b  - \left( {\overrightarrow c .\overrightarrow b } \right)\overrightarrow a  = \frac{1}{2}\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\overrightarrow a $$
    $$\overrightarrow c .\overrightarrow a  = 0$$
    $$\overrightarrow c .\overrightarrow a  = \frac{{ - 1}}{2}\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|$$
    $$\cos \theta  = \frac{{ - 1}}{2}$$
    $$ \Rightarrow \theta  = \frac{{2\pi }}{3}$$
    $$\therefore \sin \theta  = \frac{{\sqrt 3 }}{2}$$
    Hence, $$B$$is the correct answer.
  • Question 4
    1 / -0
    A line d.c's proportional to $$(2,1,2)$$ meets each of the lines $$x=y+a=z$$ and $$x+a=2y=2z$$. Then the coordinates of each of the points of intersection are given by
    Solution
    $$L_1 : \dfrac{x}{1} = \dfrac{y + a}{1} = \dfrac{z}{1}$$
    $$L_2 : \dfrac{x + a}{2} = \dfrac{y}{1} = \dfrac{z}{1}$$
    Any point on $$L_1 \, A (k_1, k_1 - 1, k_1)$$
    Any point on $$L_2 \, B (2k_2 - 1, k_2, k_2)$$
    Drs of $$AB = (k_1 - 2k_2 + a , k_1 - k_2 - a , k_1 - k-2)$$
    $$= \dfrac{k_1 - 2k_2 + a}{2} = \dfrac{k_1 - k_2 - a}{1} = \dfrac{k_1 - k_2}{2}$$
    $$\Rightarrow k_1 - 2k_2 + a = 2k_1 - 2k_2 - 2a$$
    $$\Rightarrow 3a = k_1$$
    $$\therefore 2k_1 - 2k_2 - 2a = k_1 - k_2$$
    $$\Rightarrow 2k_1 - k_1 - k_2 = 2a$$
    $$\Rightarrow k_1 - k_2 = 2a$$ 
    $$\Rightarrow k_2 = a$$
    $$\therefore A (3a , 2a , 3a)$$
       $$B (a, a, a)$$

  • Question 5
    1 / -0
    If $$\frac{x-14}{l}=\frac{y-2}{m}=\frac{z+1}{n}$$ is the equation of the line through (1,2,-1) and (-1,0,1), then (l,m,n) is 
    Solution

  • Question 6
    1 / -0
    If $$A = (1,2,3) , B  = (2,10,1), Q$$ are collinear points and $$Q_{x}=-1$$ then $$Q_{z}$$ is
    Solution

  • Question 7
    1 / -0
    The direction cosines of a vector $$ \overrightarrow { A }  $$ are $$ \cos \alpha = \frac {4} { 5 \sqrt {2}} , \cos\beta =\frac { 1 }{ \sqrt { 2 }  } , \cos\gamma =\frac { 3 }{ 5\sqrt { 2 }  }  $$ then, the vector $$ \overrightarrow {A} $$ is 
    Solution

  • Question 8
    1 / -0
    The direction cosines to two lines at right angles are (1,2,3) and (-2,$$\frac{1}{2}$$,$$\frac{1}{3}$$), then the direction cosine perpendicular to both given lines are:
    Solution
    Direction cosines of $${ L }_{ 1 }=\left( 1,2,3 \right) $$
    Direction cosines of $${ L }_{ 2 }=\left( -2,\cfrac { 1 }{ 2 } ,\cfrac { 1 }{ 3 }  \right) $$
    Let direction ratios of required line be a,b,c then
    $$a+2b+3c=0\rightarrow 1$$
    and $$-2a+\cfrac { b }{ 2 } +\cfrac { c }{ 3 } =0$$
    $$\Rightarrow -12a+3b+2c=0\rightarrow 2$$
    Solving $$1$$ and $$2$$
    $$a+2b+3c=0$$
    $$-12a+3b+2c=0$$
    $$\Rightarrow \cfrac { a }{ 4-9 } =\cfrac { b }{ -36-2 } =\cfrac { c }{ 3+24 } $$
    $$\Rightarrow \cfrac { a }{ +5 } =\cfrac { b }{ +38 } =\cfrac { c }{ -27 } $$
    $$\Rightarrow a=+5,b=+38,c=-27$$
    $$\therefore $$Direction cosines are
    $$\cfrac { 5 }{ \sqrt { { 5 }^{ 2 }+{ 38 }^{ 2 }+{ \left( 27 \right)  }^{ 2 } }  } ,\cfrac { 38 }{ \sqrt { { 5 }^{ 2 }+{ 38 }^{ 2 }+{ \left( -27 \right)  }^{ 2 } }  } ,\cfrac { -27 }{ \sqrt { { 5 }^{ 2 }+{ 38 }^{ 2 }+{ \left( -27 \right)  }^{ 2 } }  } $$
    $$\cfrac { 5 }{ \sqrt { 2198 }  } ,\cfrac { 38 }{ \sqrt { 2198 }  } ,\cfrac { -27 }{ \sqrt { 2198 }  } $$
  • Question 9
    1 / -0
    The vector equation of line passing through the point $$(-1,-1,2)$$ and parallel to the line $$2x-2=3y+1=6z-2$$
    Solution
    Given
    $$L_1 : 2x - 2 = 3y + 1 = 6z - 2$$
    $$\Rightarrow 2 (x - 1) = 3 ( y + \dfrac{1}{3}) = 6(z - \dfrac{1}{3})$$
    $$\Rightarrow \dfrac{x - 1}{3} = \dfrac{y + \dfrac{1}{3}}{2} = \dfrac{z - \dfrac{1}{3}}{1}$$
    Equation of line passing through $$(-1, -1, 2)$$ parallel to $$L_1$$
    $$\dfrac{x + 1}{3} = \dfrac{y + 1}{2} = \dfrac{z - 2}{1}$$
    vector equation is 
    $$(- \hat{i} - \hat{j} + 2 \hat{k}) + \lambda ( 3 \hat{i} + 2 \hat{j} + \hat{k})$$
  • Question 10
    1 / -0
    The direction ratios of the line joining the points $$(4, 3, -5)$$ and $$(-2, 1, -8)$$ are
    Solution
    Given points $$P(4,3,-5)$$ $$Q(-2,1,-8)$$ 
    Direction ratios of $$PQ$$ 
    $$=$$Position vector of $$P-$$Position vector of $$Q$$ 
    $$=4-(-2),3-1,-5-(-8)$$
    $$=6,2,3$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now