Self Studies

Three Dimensional Geometry Test - 50

Result Self Studies

Three Dimensional Geometry Test - 50
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A(p,q,r)$$ and $$B=(p\prime ,q\prime ,r\prime )$$ are two points on the line $$\lambda x=\mu y=yz$$ such that $$OA=3,OB=4$$ then $$pp\prime +qq\prime +rr\prime $$ is equal to 
    Solution

  • Question 2
    1 / -0
    The angle between the lines whose de's satisfy the equation $$l+m+m=0$$ and $$l^2+m^{2}-n^{2}=0$$ is 
    Solution
    Given that the equations
    $$l+m+n=0$$ ………..$$(1)$$
    $$l+m=-n$$
    $$\Rightarrow -(l+m)=n$$
    and
    $$l^2+m^2+n^2=0$$ ……….$$(2)$$
    Put the value of n in equation $$(2)$$
    $$l^2+m^2+n^2=0$$
    $$\Rightarrow l^2+m^2-(-(l+m))^2=0$$
    $$\Rightarrow l^2+m^2-(l^2+m^2-2ml)=0$$
    $$\Rightarrow l^2+m^2-l^2-m^2+2ml=0$$
    $$\Rightarrow 2ml0$$
    $$\Rightarrow ml=0$$
    $$\Rightarrow m=0, l=0$$
    Let us put $$m=0$$ in equation $$(3)$$
    $$l+o+n=0$$
    $$l=-n$$
    Hence, direction rates$$(l, m, o)=(1, 0, -1)$$
    Let us put $$l=0$$, we get $$m=-n$$
    Here, direction ratios $$(l, m, n)=(0, 1, -1)$$
    we know that,
    $$\cos\theta =\dfrac{\vec{b_1}\cdot \vec{b_2}}{|\vec{b_1}||\vec{b_2}|}$$
    $$=\dfrac{(1, 0, -1)\cdot (0, 1, -1)}{\sqrt{1^2+0^2+(-1)^2}\sqrt{0^2+1^2+(-1)^2}}$$
    $$=\dfrac{1}{\sqrt{2}\sqrt{2}}$$
    $$\cos\theta =\dfrac{1}{2}$$
    $$\cos\theta =\cos\dfrac{\pi}{3}$$
    $$\theta =\dfrac{\pi}{3}$$
    Hence, this is the answer.

  • Question 3
    1 / -0
    The angle between the lines, whose direction ratios are $$1,1,2$$ and $$\sqrt { 3 } - 1 , - \sqrt { 3 } - 1,4 ,$$ is
    Solution
    The direction ratios are $$(1, 1, 2)$$ and $$(\sqrt{3}-1, -\sqrt{3}-1, 4)$$
    Angle between them is given by

    $$\cos\theta =\dfrac{1(\sqrt{3}-1)+1(-\sqrt{3}-1)+2/4)}{\sqrt{1^2+1^2+2^2}\sqrt{(\sqrt{3}-1)^2+(-\sqrt{3}-1)^2+4^2}}$$
    $$=\dfrac{\sqrt{3}-1-\sqrt{3}-1+8}{\sqrt{6}\sqrt{8+16}}$$
    $$=\dfrac{6}{\sqrt{6}\sqrt{24}}=\dfrac{6}{\sqrt{144}}$$

    $$=\dfrac{6}{12}$$
    $$=\dfrac{1}{2}$$

    $$\cos\theta =\dfrac{1}{2}$$

    $$\Rightarrow \theta =\dfrac{\pi}{3}=60^o$$.
  • Question 4
    1 / -0
    The directions cosines of the line which is perpedicular to the lines whose direction cosines are proportional to (1, -1, 2) and (2,-1,-1) are:
    Solution

  • Question 5
    1 / -0
    If a plane passes through the point $$(1, 1, 1)$$ and is perpendicular to the line $$\dfrac{x-1}{3}=\dfrac{y-1}{0}=\dfrac{z-1}{4}$$ then its perpendicular distance from the origin is 
    Solution
    $$\begin{array}{l} Let\, eq{ u^{ n } }\, of\, plane\, be\, :\, a\left( { x-1 } \right) +b\left( { y-1 } \right) +\left( { z-1 } \right) =0 \\ 3\left( { x-1 } \right) +0\left( { y-1 } \right) +4\left( { z-1 } \right) =0 \\ 3x+4z=7 \\ perpendicular\, \, dis\tan  ce\, from\, \, origin\, \, d=\frac { 7 }{ 5 }  \\ Hence,\, the\, option\, C\, is\, correct\, answer. \end{array}$$
  • Question 6
    1 / -0
    The direction cosines of a line equally inclined to three mutually perpendicular lines having direction cosines as $$l_{1},m_{1},n_{1};l_{2},m_{2},n_{2}$$ and $$l_{3},m_{3},n_{3}$$ are
  • Question 7
    1 / -0
    $$l=m=n=1$$ represent the direction cosines of the 
    Solution
    $$l=m=n=1$$
    $$(1,1,1)$$ represent direction ratio of line equally inclined to $$x,y\, \&\,zaxis$$
    Hence,
    option $$D$$ is correct answer.
  • Question 8
    1 / -0
    If the points (p. 0), (0, q) and (1, 1) are collinear then $$\dfrac { 1 }{ p } +\dfrac { 1 }{ q } $$ is equal to 
    Solution
    If the area of triangle is zero, then the points are collinear.
    Points are collinear.
    Point are $$(p, o)(o, q)(i,q)$$

    $$\Delta =\dfrac {1}{2}[p(q-1)-0(1-0)+1(0-q)]$$
    $$\Rightarrow \dfrac{1}{2}[p(q-1)-q]$$
    $$\Rightarrow \dfrac{1}{2}[p(q-1)-q]$$

    $$\Rightarrow \dfrac{1}{2}[pq-(p+q)]=o$$
    $$\Rightarrow pq=p+q\Rightarrow \dfrac {p+q}{pq}=1$$

    $$\Rightarrow \dfrac{1}{p}+\dfrac{1}{q}=1$$
  • Question 9
    1 / -0
    The direction ratios of the line
    $$x-y+z-5=\quad 0\quad =\quad x-3y-6\quad are$$
    Solution
    $$x-y+z-5=0=x-3y-6$$

    $$x-y+z-5=0$$--(I)
    $$x-3y-6=0$$--(II)
    The Direction ratios of the line is $$(\hat{i} - \hat{j} + \hat{k})\times(\hat{i} -3\hat{j}) $$
                                                 =$$3\hat{i}+\hat{j}-2\hat{k}$$
    Hence,the direction ratios is (3,1,-2).
    Hence, Option A is correct
  • Question 10
    1 / -0
    The direction cosines of a line equally inclined to three mutually perpendicular lines having direction cosines as $$l_1$$, $$m_1$$, $$n_1$$ : $$l_2$$, $$m_2$$, $$n_2$$ and   $$l_3$$, $$m_3$$, $$n_3$$ are
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now