Self Studies

Inverse Trigono...

TIME LEFT -
  • Question 1
    1 / -0

    Find the value of \(\cot ^{-1}(\sqrt{3})\).

  • Question 2
    1 / -0

    \(\sec ^{-1}\left[\frac{x^{2}+1}{x^{2}-1}\right]=?\)

  • Question 3
    1 / -0

    If \(\sin ^{-1}\left(\frac{2 \mathrm{i}}{1+\mathrm{a}^{2}}\right)+\sin ^{-1}\left(\frac{2 \mathrm{~b}}{1+\mathrm{b}^{2}}\right)=2 \tan ^{-1} \mathrm{x}\), then \(\mathrm{x}\) is equal to:

  • Question 4
    1 / -0

    \(\tan \left(2 \tan ^{-1}(\cos x)\right)\) is equal to?

  • Question 5
    1 / -0

    Find the principal value of \(\sin ^{-1}\left(\frac{-1}{\sqrt{2}}\right)\).

  • Question 6
    1 / -0

    If \(\alpha=\cos ^{-1}\left(\frac{3}{5}\right), \beta=\tan ^{-1}\left(\frac{1}{3}\right)\), where \(0<\alpha, \beta<\frac{\pi}{2}\), then \(\alpha-\beta\) is equal to:

  • Question 7
    1 / -0

    What is the value of \(\operatorname{cosec}^{2} \cot ^{-1}\left(\frac{5}{12}\right) ?\)

  • Question 8
    1 / -0

    The value of \(\sin \left(\cot ^{-1} x\right)\) is:

  • Question 9
    1 / -0

    The value of \(2 \tan ^{-1}\left[\operatorname{cosec}\left(\tan ^{-1} x\right)-\tan \left(\cot ^{-1} x\right)\right]\) is:

  • Question 10
    1 / -0

    What is the value of \(\cos \left\{\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}\right\} ?\)

  • Question 11
    1 / -0

    The value of \(\sin ^{-1}\left(\frac{4}{5}\right)-\sin ^{-1}\left(\frac{3}{5}\right)\) is equal to:

  • Question 12
    1 / -0

    Find \(\cot \left[\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{8}\right]=?\)

  • Question 13
    1 / -0

    If \(\sin ^{-1} \frac{3}{x}+\sin ^{-1} \frac{9}{x}=\frac{\pi}{2}\) then what is the value of \(x\)?

  • Question 14
    1 / -0

    If \(\tan ^{-1} 2, \tan ^{-1} 3\) are two angles of a triangle, then what is the third angle?

  • Question 15
    1 / -0

    If \(\sin ^{-1} x+\cos ^{-1} y=\frac{2 \pi}{5}\), then \(\cos ^{-1} x+\sin ^{-1} y\) is:

  • Question 16
    1 / -0

    Which of the following is equal to \(\tan ^{-1}\left(\frac{8 x \sqrt{x}}{1-16 x^{3}}\right)?\)

  • Question 17
    1 / -0

    If ' \(\theta\) ' is an acute angle and \(\operatorname{cosec} \theta=\sqrt{2 \sqrt{2 \sqrt{2}}} \ldots \ldots \ldots\), then the value of \(\tan \theta\):

  • Question 18
    1 / -0

    The equation \(\tan ^{-1}(1+x)+\tan ^{-1}(1-x)=\frac{\pi}{2}\) is satisfied by:

  • Question 19
    1 / -0

    The domain of \(\sin ^{-1} 5 x\) is:

  • Question 20
    1 / -0

    The value of \(\sec \left(\tan ^{-1} \frac{\mathrm{y}}{2}\right)\) is:

  • Question 21
    1 / -0

    The value of \(\sin ^{-1} \sin \left(\frac{33 \pi}{5}\right)\) is?

  • Question 22
    1 / -0

    If \(\tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \tan ^{-1} x, x>0\), then \(x\) equals:

  • Question 23
    1 / -0

    Find the value of \(\cos ^{-1}\left(4 x^{3}-3 x\right), x \in[-1,1]\):

  • Question 24
    1 / -0

    If \(x=\tan ^{-1}(\frac{1}{5})\) then \(\sin 2 x\) is equal to?

  • Question 25
    1 / -0

    Find \(\cot ^{-1} \frac{1}{3}-2 \tan ^{-1} \frac{2}{3}\):

  • Question 26
    1 / -0

    Find the value of \(x\) for the equation \(2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x) ?\)

  • Question 27
    1 / -0

    Find the value of \(2 \tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{\sqrt{3}}{2}\right)\right]\)

  • Question 28
    1 / -0

    Find the domain of the inverse trigonometric function \(\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)\) is:

  • Question 29
    1 / -0

    What is \(\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\) equal to?

  • Question 30
    1 / -0

    \(\cos \left(2 \sin ^{-1} \sqrt{\frac{1-x}{2}}\right)\) is equal to:

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 30

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now