Given
\(\alpha=\cos ^{-1}\left(\frac{3}{5}\right), \beta=\tan ^{-1}\left(\frac{1}{3}\right)\) \(\Rightarrow \cos \alpha=\frac{3}{5}\) and \(\tan \beta=\frac{1}{3}\)
According to Pythagoras triplet, \(\sin \alpha=\frac{4}{5}\)
Now, \(\tan \alpha=\frac{\sin \alpha}{\cos \alpha}=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{3}\)
We know that, \(\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha-\tan \beta}\)
\(\Rightarrow \tan (\alpha-\beta)=\frac{\frac{4}{3}-\frac{1}{3}}{1+\frac{4}{9}}\)
\(\Rightarrow \tan (\alpha-\beta)=\frac{\frac{3}{3}}{\frac{13}{9}} \)
\(\Rightarrow \tan (\alpha-\beta)=\frac{9}{13} \)
\(\Rightarrow \frac{\sin (\alpha-\beta)}{\cos (\alpha-\beta)}=\frac{9}{13}\)
According to options,
\(\frac{\sin (\alpha-\beta)}{\cos (\alpha-\beta)}=\frac{9 / 5 \sqrt{10}}{13 / 5 \sqrt{10}}\)
Now, \(\sin (\alpha-\beta)=\frac{9}{5 \sqrt{10}}\)
\(\therefore \alpha-\beta=\sin ^{-1}\left(\frac{9}{5 \sqrt{10}}\right)\)
In terms of cosine, \(\cos (\alpha-\beta)=\frac{13}{5 \sqrt{10}}\)
\(\therefore \alpha-\beta=\cos ^{-1}\left(\frac{13}{5 \sqrt{10}}\right)\)
In terms of \(\tan , \tan (\alpha-\beta)=\frac{9}{13}\)
\(\therefore \alpha-\beta=\tan ^{-1}\left(\frac{9}{13}\right)\)
Here, \(\alpha-\beta=\sin ^{-1}\left(\frac{9}{5 \sqrt{10}}\right)\)
Hence, the correct option is (D).