Self Studies

Inverse Trigonometric Functions Test - 18

Result Self Studies

Inverse Trigonometric Functions Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Find the value of \(\cot ^{-1}(\sqrt{3})\).

    Solution

    Given,

    \(\cot ^{-1}(\sqrt{3})\)

    Let \(\cot ^{-1}(\sqrt{3})=\theta\)

    \(\Rightarrow \cot \theta=\sqrt{3}=\cot \frac{\pi}{6}\)

    \(\therefore \theta=\frac{\pi}{6}\)

    Hence, the correct option is (C).

  • Question 2
    1 / -0

    \(\sec ^{-1}\left[\frac{x^{2}+1}{x^{2}-1}\right]=?\)

    Solution

    Given,

    \(\sec ^{-1}\left[\frac{x^{2}+1}{x^{2}-1}\right]\)

    Put \(x=\tan \theta\)

    \(=\sec ^{-1}\left[\frac{\tan ^{2} \theta+1}{\tan ^{2} \theta-1}\right]\)

    \(=\sec ^{-1}\left[\frac{\frac{\operatorname{ate}^{2} \theta+\operatorname{cas}^{2} \theta}{\cos ^{2} \theta}}{\frac{\sin ^{2} \theta-\cos ^{2} \theta}{\cos ^{2} \theta}}\right]\)

    \(=\sec ^{-1}\left[\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin ^{2} \theta-\cos ^{2} \theta}\right]\)

    \(=\sec ^{-1}\left[\frac{1}{-\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}\right] \quad\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right)\)

    \(=\sec ^{-1}\left[\frac{1}{-\cos 2 \theta}\right] \quad\left(\because \cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta\right)\)

    \(=\sec ^{-1}[-\sec 2 \theta] \quad\left(\because \frac{1}{\cos \theta}=\sec \theta\right)\)

    \(=\pi-\sec ^{-1}[\sec 2 \theta] \quad\left(\because \sec ^{-1}(-\theta)=\pi-\sec ^{-1} \theta\right)\)

    \(=\pi-2 \theta \quad\left(\because \sec ^{-1}(\sec \theta)=\theta\right)\)

    Replace \(\theta\) in terms of \(\mathrm{x}_{1}\)

    \(x=\tan \theta \Rightarrow \theta=\tan ^{-1} x \)

    \(=\pi-2 \tan ^{-1} x\)

    \(=\pi-2\left(\frac{ { \pi}}{2}-\cot ^{-1} x\right)\left(\because \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}\right) \)

    \(=\pi-\pi+2 \cot ^{-1} x \)

    \(=2 \cot ^{-1} x\)

    Hence, the correct option is (C).

  • Question 3
    1 / -0

    If \(\sin ^{-1}\left(\frac{2 \mathrm{i}}{1+\mathrm{a}^{2}}\right)+\sin ^{-1}\left(\frac{2 \mathrm{~b}}{1+\mathrm{b}^{2}}\right)=2 \tan ^{-1} \mathrm{x}\), then \(\mathrm{x}\) is equal to:

    Solution

    Given,

    \(\sin ^{-1}\left(\frac{2 a}{1+a^{2}}\right)+\sin ^{-1}\left(\frac{2 b}{1+b^{2}}\right)=2 \tan ^{-1} x\)

    Let \(\mathrm{a}=\tan \mathrm{y}_{1}\) and \(\mathrm{b}=\tan \mathrm{y}_{2}\)

    Therefore, the given equation becomes:

    \(\sin ^{-1}\left(\frac{2 a}{1+a^{2}}\right)+\sin ^{-1}\left(\frac{2 b}{1+b^{2}}\right)=2 \tan ^{-1} x\)

    \(\sin ^{-1}\left(\frac{2\left(\tan y_{1}\right)}{1+\left(\tan y_{1}\right)^{2}}\right)+\sin ^{-1}\)\(\left(\frac{2\left(\tan y_{2}\right)}{1+\left(\tan y_{2}\right)^{2}}\right)=2 \tan ^{-1} x \)

    \(\sin ^{-1}\left(\sin 2 y_{1}\right)+\sin ^{-1}\left(\sin 2 y_{2}\right)=2 \tan ^{-1} x\)

    \(2 y_{1}+2 y_{2}=2 \tan ^{-1} x \)

    \(y_{1}+y_{2}=\tan ^{-1} x \)

    \(\tan \left(y_{1}+y_{2}\right)=x \)

    \(\frac{\tan y_{1}+\tan y_{2}}{1-\tan y_{1} \tan y_{2}}=x\)\(\quad\quad(\because \tan (x+y) =\frac{\tan x+\tan y}{1-\tan x \tan y})\)

    \(\frac{a+b}{1-a b}=x\)

    \(\therefore x=\frac{a+b}{1-a b}\)

    Hence, the correct option is (D).

  • Question 4
    1 / -0

    \(\tan \left(2 \tan ^{-1}(\cos x)\right)\) is equal to?

    Solution

    Given,

    \(\tan \left(2 \tan ^{-1}(\cos x)\right)\)

    As we know, \(2 \tan ^{-1} x =\tan ^{-1} \frac{2 x }{1- x ^{2}}\)

    Therefore,

    \(2 \tan ^{-1} \cos x=\tan ^{-1} \frac{2 \cos x}{1-\cos ^{2} x}\)

    \(=\tan ^{-1} \frac{2 \cos x}{\sin ^{2} x}\)\(\quad(\because 1 - cos^2{x} =sin^2{x})\) 

    \(=\tan ^{-1}(2 \cot x \operatorname{cosec} x)\)

    \(\tan \left(\tan ^{-1}(2 \cot x \operatorname{cosec} x)\right)=2 \cot x \operatorname{cosec} x \quad\left(\because \tan \left(\tan ^{-1} x\right)=x\right)\)

    Hence, the correct option is (B).

  • Question 5
    1 / -0

    Find the principal value of \(\sin ^{-1}\left(\frac{-1}{\sqrt{2}}\right)\).

    Solution

    Given,

    \(\sin ^{-1}\left(\frac{-1}{\sqrt{2}}\right)\)

    As we know \(\sin ^{-1}(-x)=-\sin ^{-1} x\)

    So, \(\sin ^{-1}\left(\frac{-1}{\sqrt{2}}\right)=-\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)\)

    Let \(\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\theta\)

    \(\Rightarrow \sin \theta=\frac{1}{\sqrt{2}}=\sin 45^{\circ}\)

    \(\therefore \theta=-45^{\circ}\)

    Hence, the correct option is (C).

  • Question 6
    1 / -0

    If \(\alpha=\cos ^{-1}\left(\frac{3}{5}\right), \beta=\tan ^{-1}\left(\frac{1}{3}\right)\), where \(0<\alpha, \beta<\frac{\pi}{2}\), then \(\alpha-\beta\) is equal to:

    Solution

    Given

    \(\alpha=\cos ^{-1}\left(\frac{3}{5}\right), \beta=\tan ^{-1}\left(\frac{1}{3}\right)\) \(\Rightarrow \cos \alpha=\frac{3}{5}\) and \(\tan \beta=\frac{1}{3}\)

    According to Pythagoras triplet, \(\sin \alpha=\frac{4}{5}\)

    Now, \(\tan \alpha=\frac{\sin \alpha}{\cos \alpha}=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{3}\)

    We know that, \(\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha-\tan \beta}\)

    \(\Rightarrow \tan (\alpha-\beta)=\frac{\frac{4}{3}-\frac{1}{3}}{1+\frac{4}{9}}\)

    \(\Rightarrow \tan (\alpha-\beta)=\frac{\frac{3}{3}}{\frac{13}{9}} \)

    \(\Rightarrow \tan (\alpha-\beta)=\frac{9}{13} \)

    \(\Rightarrow \frac{\sin (\alpha-\beta)}{\cos (\alpha-\beta)}=\frac{9}{13}\)

    According to options,

    \(\frac{\sin (\alpha-\beta)}{\cos (\alpha-\beta)}=\frac{9 / 5 \sqrt{10}}{13 / 5 \sqrt{10}}\)

    Now, \(\sin (\alpha-\beta)=\frac{9}{5 \sqrt{10}}\)

    \(\therefore \alpha-\beta=\sin ^{-1}\left(\frac{9}{5 \sqrt{10}}\right)\)

    In terms of cosine, \(\cos (\alpha-\beta)=\frac{13}{5 \sqrt{10}}\)

    \(\therefore \alpha-\beta=\cos ^{-1}\left(\frac{13}{5 \sqrt{10}}\right)\)

    In terms of \(\tan , \tan (\alpha-\beta)=\frac{9}{13}\)

    \(\therefore \alpha-\beta=\tan ^{-1}\left(\frac{9}{13}\right)\)

    Here, \(\alpha-\beta=\sin ^{-1}\left(\frac{9}{5 \sqrt{10}}\right)\)

    Hence, the correct option is (D).

  • Question 7
    1 / -0

    What is the value of \(\operatorname{cosec}^{2} \cot ^{-1}\left(\frac{5}{12}\right) ?\)

    Solution

    Given,

    \(\operatorname{cosec}^{2} \cot ^{-1}\left(\frac{5}{12}\right)\)

    Let \(\theta=\cot ^{-1}\left(\frac{5}{12}\right)\)

    \(\Rightarrow \cot \theta=\frac{5}{12}\)

    Therefore,

    \(\operatorname{cosec}^{2} \cot ^{-1}\left(\frac{5}{12}\right)=\operatorname{cosec}^{2} \theta\)

    \(=1+\cot ^{2} \theta\)\(\quad\quad(\because 1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta)\)

    \(=1+\left(\frac{5}{12}\right)^{2}\)

    \(=\frac{169}{144}\)

    Hence, the correct option is (B).

  • Question 8
    1 / -0

    The value of \(\sin \left(\cot ^{-1} x\right)\) is:

    Solution

    We know that \(\sin ^{2} \theta+\cos ^{2} \theta=1\)

    \(\Rightarrow 1+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta}\)

    \(\Rightarrow 1+\cot ^{2} \theta=\frac{1}{\sin ^{2} \theta} \)

    \(\Rightarrow \sin \theta=\frac{1}{\sqrt{1+\cot ^{2} \theta}}\)

    Let \(\cot ^{-1} x=\theta\)

    \(\Rightarrow \cot \left(\cot ^{-1} x\right)=\cot \theta \)

    \(\Rightarrow \cot \theta=x \)

    Therefore,

    \(\sin \theta=\frac{1}{\sqrt{1+\cot ^{2} \theta}}\)

    \(=\frac{1}{\sqrt{1+x^{2}}} \)

    \(\Rightarrow \sin \left(\cot ^{-1} x\right)=\frac{1}{\sqrt{1+x^{2}}}\)

    Hence, the correct option is (C).

  • Question 9
    1 / -0

    The value of \(2 \tan ^{-1}\left[\operatorname{cosec}\left(\tan ^{-1} x\right)-\tan \left(\cot ^{-1} x\right)\right]\) is:

    Solution

    Given,

    \(2 \tan ^{-1}\left[\operatorname{cosec}\left(\tan ^{-1} x\right)-\tan \left(\cot ^{1} x\right)\right]\)

    \(\Rightarrow 2 \tan ^{-1}\left[\operatorname{cosec}\left(\tan ^{-1} x\right)-\tan \left(90-\tan ^{-1} x\right)\right]\)

    Let \(\tan ^{-1} x=\theta\)

    \(\Rightarrow 2 \tan ^{-1}[\operatorname{cosec} \theta-\tan (90-\theta)]\)

    \(\Rightarrow 2 \tan ^{-1}[\operatorname{cosec} \theta-\cot \theta]\)\(\quad\quad(\because \tan(90 - \theta = \cot \theta)\)

    \(\Rightarrow 2 \tan ^{-1}\left[\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right]\)\(\quad\quad(\because \operatorname{cosec} \theta = \frac{1}{\sin \theta}, \cot \theta = \frac{\cos \theta}{\sin \theta}) \)

    \(\Rightarrow 2 \tan ^{-1}\left[\frac{1-\cos \theta}{\sin \theta}\right]\)

    \(\Rightarrow 2 \tan ^{-1}\left[\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right]\)

    \(\Rightarrow 2 \tan ^{-1}\left[\tan \frac{\theta}{2}\right]\)

    \(\Rightarrow \theta=\tan ^{-1} x\)

    Hence, the correct option is (C).

  • Question 10
    1 / -0

    What is the value of \(\cos \left\{\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}\right\} ?\)

    Solution

    Given,

    \(\cos \left\{\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}\right\}\)

    \(=\cos ^{-1}\left[\frac{4}{5} \times \frac{12}{13}-\sqrt{1-\left(\frac{4}{5}\right)^{2}} \sqrt{1-\left(\frac{12}{13}\right)^{2}}\right] \) \(\quad\quad (\because cos^{-1}x + cos^{-1}y =  cos^{-1}(xy - \sqrt{1−x^{2}} × \sqrt{1−y^{2}}))\)

    \(=\cos ^{-1}\left[\frac{48}{65}-\frac{3}{5} \times \frac{5}{13}\right] \)

    \(=\cos ^{-1}\left[\frac{48}{65}-\frac{15}{65}\right] \)

    \(=\cos ^{-1} \frac{33}{65}\)

    Now,

    \(\cos \left\{\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}\right\} \)

    \(=\cos \left(\cos ^{-1} \frac{33}{65}\right) \)

    \(=\frac{33}{65} \quad\left(\because \cos \left(\cos ^{-1} x\right)=x\right)\)

    Hence, the correct option is (B).

  • Question 11
    1 / -0

    The value of \(\sin ^{-1}\left(\frac{4}{5}\right)-\sin ^{-1}\left(\frac{3}{5}\right)\) is equal to:

    Solution

    Given,

    \(\sin ^{-1}(\frac{4}{5})-\sin ^{-1}(\frac{3}{5})\)

    \(=\sin ^{-1}\left(\left(\frac{4}{5} \sqrt{1-\left(\frac{3}{5}\right)^{2}}\right)-\left(\frac{3}{5} \sqrt{1-\left(\frac{4}{5}\right)^{2}}\right)\right)\)\(\quad\quad(\because\sin ^{-1} x-\sin ^{-1} y=\sin ^{-1}(x \sqrt{1-y^{2}}-y \sqrt{1-x^{2}})\)

    \(=\sin ^{-1}\left(\left(\frac{4}{5} \sqrt{1-\frac{9}{25}}\right)-\left(\frac{3}{5} \sqrt{\left.\left.1-\frac{16}{25}\right)\right)}\right.\right.\)

    \(=\sin ^{-1}\left(\left(\frac{4}{5} \sqrt{\frac{25-9}{25}}\right)-\left(\frac{3}{5} \sqrt{\frac{25-16}{25}}\right)\right)\)

    \(=\sin ^{-1}\left(\left(\frac{4}{5} \sqrt{\frac{16}{25}}\right)-\left(\frac{3}{5} \sqrt{\frac{9}{25}}\right)\right)\)

    \(=\sin ^{-1}\left(\left(\frac{4}{5} \sqrt{\left(\frac{4}{5}\right)^{2}}\right)-\left(\frac{3}{5} \sqrt{\left(\frac{3}{5}\right)^{2}}\right)\right)\)

    \(=\sin ^{-1}\left(\left(\frac{4}{5} \times \frac{4}{5}\right)-\left(\frac{3}{5} \times \frac{3}{5}\right)\right)\)

    \(=\sin ^{-1}\left(\left(\frac{16}{25}\right)-\left(\frac{9}{25}\right)\right)\)

    \(=\sin ^{-1}\left(\frac{7}{25}\right)\)

    Hence, the correct option is (B).

  • Question 12
    1 / -0

    Find \(\cot \left[\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{8}\right]=?\)

    Solution

    Given,

    \(\cot \left[\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{8}\right]=\)

    \(=\cot [\tan ^{-1}\left(\frac{\frac{1}{2}+\frac{1}{8}}{1-\frac{1}{2} \times \frac{1}{8}}\right)] \quad\left(\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{\tan x+\tan y}{1-\tan x \tan y}\right)\right)\)

    \(=\cot [\tan ^{-1} \frac{\left(\frac{2+8}{16}\right)}{\left(\frac{16-1}{16}\right)}]\)

    \(=\cot [\tan ^{-1} \frac{\left(\frac{10}{16}\right)}{\left(\frac{15}{16}\right)} ]\)

    \(=\cot [\tan ^{-1} \frac{10}{15}]\)\(=\tan ^{-1} \frac{2}{3}\)

    \(\tan ^{-1} \frac{2}{3}=\cot ^{-1} \frac{3}{2}\)\(\quad\quad(\because \tan ^{-1} x=\cot ^{-1} \frac{1}{x})\) 

    Now,

    \(\cot \left[\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{8}\right] \)

    \(=\cot [\cot ^{-1} \frac{3}{2}]\)

    \(=\frac{3}{2}\)

    Hence, the correct option is (A).

  • Question 13
    1 / -0

    If \(\sin ^{-1} \frac{3}{x}+\sin ^{-1} \frac{9}{x}=\frac{\pi}{2}\) then what is the value of \(x\)?

    Solution

    Given

    \(\sin ^{-1} \frac{3}{x}+\sin ^{-1} \frac{9}{x}=\frac{\pi}{2}\)

    Let

    \(\sin ^{-1} \frac{9}{x}=y\)...(i)

    \(\Rightarrow \operatorname{siny}=\frac{9}{x}\)....(ii)

    Therefore,

    \(\cos ^{2} y=1-\sin ^{2} y \)

    By using equation (ii) we get,

    \(\cos ^{2} y=1-\left(\frac{9}{x}\right)^{2}\)

    \(\Rightarrow \cos ^{2} y=1-\frac{81}{x^{2}}\)

    \(\Rightarrow \cos ^{2} y=\frac{\sqrt{x^{2}-81}}{x} \)\(\Rightarrow y=\cos ^{-1} \frac{\sqrt{x^{2}-81}}{x}\)

    Using equation (ii) we get,

    \(\sin ^{-1} \frac{9}{x}=\cos ^{-1} \frac{\sqrt{x^{2}-81}}{x}\)

    \(\sin ^{-1} \frac{9}{x}+\cos ^{-1} \frac{\sqrt{x^{2}-81}}{x}=\frac{\pi}{2}\)

    Now we know \(\sin ^{-1} \mathrm{y}+\cos ^{-1} \mathrm{y}=\frac{\pi}{2}\)

    So,

    \(\frac{9}{x}=\frac{\sqrt{x^{2}-81}}{x}\)

    \(9=x^{2}-81\)

    \(\Rightarrow x^{2}=90\)

    \(x=3 \sqrt{10}\)

    Hence, the correct option is (B).

  • Question 14
    1 / -0

    If \(\tan ^{-1} 2, \tan ^{-1} 3\) are two angles of a triangle, then what is the third angle?

    Solution

    Given,

    \(\tan ^{-1} 2, \tan ^{-1} 3\) are two angles of a triangle.

    We know that

    \(\tan ^{-1} \mathrm{a}+\tan ^{-1} \mathrm{~b}=\tan ^{-1}\left(\frac{\mathrm{a}+\mathrm{b}}{1-\mathrm{ab}}\right)\)

    Consider

    \(\tan ^{-1} 2+\tan ^{-1} 3=\tan ^{-1}\left(\frac{2+3}{1-2.3}\right) \)

    \(\tan ^{-1} 2+\tan ^{-1} 3=\tan ^{-1}\left(\frac{5}{-5}\right)\)

    \(\tan ^{-1} 2+\tan ^{-1} 3=\tan ^{-1}(-1)\)

    \(\tan ^{-1} 2+\tan ^{-1} 3=\frac{3 \pi}{4}\)

    Now, the sum of angles of the triangle is \(180^{\circ}\) i.e \(\pi\)

    Consider the third angle as \(A\).

    \(\tan ^{-1} 2+\tan ^{-1} 3+A=\pi\)

    \(\frac{3 \pi}{4}+A=\pi\)

    \(\mathrm{A}=\frac{\pi}{4}\)

    If \(\tan ^{-1} 2, \tan ^{-1} 3\) are two angles of a triangle, then the third angle is \(\frac{\pi}{4}\)

    Hence, the correct option is (C).

  • Question 15
    1 / -0

    If \(\sin ^{-1} x+\cos ^{-1} y=\frac{2 \pi}{5}\), then \(\cos ^{-1} x+\sin ^{-1} y\) is:

    Solution

    Given,

    \(\sin ^{-1} \mathrm{x}+\cos ^{-1} \mathrm{y}=\frac{2 \pi}{5}\)

    We know that, \(\sin ^{-1} \mathrm{x}+\cos ^{-1} \mathrm{x}=\frac{\pi}{2}\)

    \(\sin ^{-1} x=\frac{\pi}{2}-\cos ^{-1} x\)....(i)

    Similarly,

    \(\sin ^{-1} \mathrm{y}+\cos ^{-1} \mathrm{y}=\frac{\pi}{2}\)

    \(\cos ^{-1} \mathrm{y}=\frac{\pi}{2}-\sin ^{-1} \mathrm{y}\)...(i)

    Now,

    \(\sin ^{-1} \mathrm{x}+\cos ^{-1} \mathrm{y}=\frac{2 \pi}{5}\)

    From equation (i) and (ii) we get,

    \(\Rightarrow \frac{\pi}{2}-\cos ^{-1} \mathrm{x}+\frac{\pi}{2}-\sin ^{-1} \mathrm{y}=\frac{2 \pi}{5}\)

    \(\Rightarrow \pi-\cos ^{-1} \mathrm{x}-\sin ^{-1} \mathrm{y}=\frac{3 \pi}{5}\)

    Hence, the correct option is (B).

  • Question 16
    1 / -0

    Which of the following is equal to \(\tan ^{-1}\left(\frac{8 x \sqrt{x}}{1-16 x^{3}}\right)?\)

    Solution

    Given,

    \(\tan ^{-1}\left(\frac{8 x \sqrt{x}}{1-16 x^{3}}\right)\)...(i)

    Rewrite the equation (i) as follows:

    \(\tan ^{-1}\left(\frac{8 x \cdot \sqrt{x}}{1-16 x^{3}}\right)=\tan ^{-1}\left(\frac{2(4 x \sqrt{x})}{1-(4 x \sqrt{x})^{2}}\right)\)

    On comparing equation (i) with \(2 \tan ^{-1} \mathrm{x}=\tan ^{-1}(\frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}))\) we get,

    \(=2 \tan ^{-1}(4 x \sqrt{x})\)

    Hence, the correct option is (A).

  • Question 17
    1 / -0

    If ' \(\theta\) ' is an acute angle and \(\operatorname{cosec} \theta=\sqrt{2 \sqrt{2 \sqrt{2}}} \ldots \ldots \ldots\), then the value of \(\tan \theta\):

    Solution

    Given,

    \(\operatorname{cosec} \theta=\sqrt{2 \sqrt{2 \sqrt{2}}} \ldots \ldots \ldots\)

    Let \(x=\sqrt{2 \sqrt{2 \sqrt{2}}} \ldots \ldots \ldots\)

    On squaring both sides we get,

    \(x^{2}=2 \sqrt{2 \sqrt{2}} \ldots \ldots \ldots\)

    \(\Rightarrow x^{2}=2 x \quad(\because x=\sqrt{2 \sqrt{2 \sqrt{2}}} \ldots \ldots \ldots .) \)

    \(\Rightarrow x^{2}-2 x=0\)

    \(\Rightarrow x(x-2)=0 \)

    \(\Rightarrow x=2 \text { OR } x=0 \)

    \(\text { If } x=2 \text { : } \)

    \(\operatorname{cosec} \theta=2\)

    \(\Rightarrow \theta=30^{\circ}\)

    \(\therefore \tan \theta=\tan 30^{\circ}=\frac{1}{\sqrt{3}}\)

    Hence, the correct option is (C).

  • Question 18
    1 / -0

    The equation \(\tan ^{-1}(1+x)+\tan ^{-1}(1-x)=\frac{\pi}{2}\) is satisfied by:

    Solution

    Given,

    \(\tan ^{-1}(1+x)+\tan ^{-1}(1-x)=\frac{\pi}{2}\)

    \(\Rightarrow \tan ^{-1}\left(\frac{1+x+1-x}{1-(1+x)(1-x)}\right)=\tan ^{-1}\left(\frac{1}{0}\right) \)\(\quad\quad(\because\tan ^{-1} \mathrm{~A}+\tan ^{-1} \mathrm{~B}=\tan ^{-1}\left(\frac{A+\mathrm{B}}{1-\mathrm{AB}}\right)\) where \(\mathrm{A}>0, \mathrm{~B}>0 \& \mathrm{AB}<1)\)

    \(\Rightarrow \frac{2}{1-1+x^{2}}=\frac{1}{0} \)

    \(\Rightarrow x^{2}=0 \)

    \(\Rightarrow x=0\)

    Hence, the correct option is (C).

  • Question 19
    1 / -0

    The domain of \(\sin ^{-1} 5 x\) is:

    Solution

    Let's say that \(\sin ^{-1} 5 x=\theta\)

    \(\Rightarrow \sin \left(\sin ^{-1} 5 x\right)=\sin \theta \)

    \(\Rightarrow \sin \theta=5 x\)

    Since, \(-1 \leq \sin \theta \leq 1\)

    \(\Rightarrow-1 \leq 5 x \leq 1\)

    \(\Rightarrow-\frac{1}{5} \leq x \leq \frac{1}{5} \)

    \(\Rightarrow x \in\left[-\frac{1}{5}, \frac{1}{5}\right]\)

    The domain of the function is the closed interval \(\left[-\frac{1}{5}, \frac{1}{5}\right]\).

    Hence, the correct option is (C).

  • Question 20
    1 / -0

    The value of \(\sec \left(\tan ^{-1} \frac{\mathrm{y}}{2}\right)\) is:

    Solution

    Given,

    \(\sec (\tan ^{-1} \frac{\mathrm{y}}{2})\)

    Let's say that \(\tan ^{-1} \frac{y}{2}=\theta\), where \(\theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\).

    \(\Rightarrow \tan \theta=\frac{y}{2}\)

    \(\Rightarrow \tan ^{2} \theta=\frac{y^{2}}{4}\)

    \(\Rightarrow 1+\tan ^{2} \theta=1+\frac{y^{2}}{4}\)

    \(=\frac{y^{2}+4}{4}\)

    \(\Rightarrow \sec ^{2} \theta=\frac{y^{2}+4}{4}\)\(\quad\quad(\because  1+\tan ^{2} \theta = \sec ^{2} \theta)\)

    \(\Rightarrow \sec \theta=\frac{\sqrt{y^{2}+4}}{2}\)

    \(\Rightarrow \sec \left(\tan ^{-1} \frac{y}{2}\right)=\frac{\sqrt{y^{2}+4}}{2}\)

    Hence, the correct option is (D).

  • Question 21
    1 / -0

    The value of \(\sin ^{-1} \sin \left(\frac{33 \pi}{5}\right)\) is?

    Solution

    Given,

    \(\sin ^{-1} \sin \left(\frac{33 \pi}{5}\right)\)

    \(\sin ^{-1} \sin \left(\frac{33 \pi}{5}\right)=\sin ^{-1} \sin \left(6 \pi+\frac{3 \pi}{5}\right) \)

    \(=\sin ^{-1} \sin \left(\frac{3 \pi}{5}\right) \quad(: \sin (2 n \pi+\theta)=\sin \theta)\)

    \(=\sin ^{-1} \sin \left(\pi-\frac{2 \pi}{5}\right) \)

    \(=\sin ^{-1} \sin \left(\frac{2 \pi}{5}\right) \quad(\because \sin (\pi-\theta)=\sin \theta)\)

    Here \(\frac{2 \pi}{5}\) is lies between \(\frac{-\pi}{2}\) to \(\frac{\pi}{2}\)

    \(\therefore \sin ^{-1} \sin \left(\frac{2 \pi}{5}\right)=\frac{2 \pi}{5}\)

    Hence, the correct option is (B).

  • Question 22
    1 / -0

    If \(\tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \tan ^{-1} x, x>0\), then \(x\) equals:

    Solution

    Given,

    \(\tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \tan ^{-1} x\)

    \(\Rightarrow 2 \tan ^{-1}\left(\frac{1-x}{1+(1 \times x)}\right)=\tan ^{-1} x\)

    \(\Rightarrow 2\left[\tan ^{-1} 1-\tan ^{-1} x\right]=\tan ^{-1} x\)

    \(\Rightarrow 2\left(\tan ^{-1} 1\right)=3 \tan ^{-1} x\)

    \(\Rightarrow 2 \times \frac{\pi}{4}=3 \tan ^{-1} x\)

    \(\Rightarrow \frac{\pi}{6}=\tan ^{-1} x\)

    \(\Rightarrow x=\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}\)

    Hence, the correct option is (C).

  • Question 23
    1 / -0

    Find the value of \(\cos ^{-1}\left(4 x^{3}-3 x\right), x \in[-1,1]\):

    Solution

    Given,

    \(\cos ^{-1}\left(4 x^{3}-3 x\right)\)

    Put \(x=\cos \theta\)

    \(\Rightarrow \theta = \cos^{-1} x\)

    \(\cos ^{-1}\left(4 x^{3}-3 x\right)\)

    \(=\cos ^{-1}\left(4 \cos ^{3} \theta-3 \cos \theta\right) \)

    \(=\cos ^{-1}(\cos 3 \theta) \quad\left(\because \cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta\right) \)

    \(=3 \theta \quad\left(\because \cos ^{-1} \cos \theta=\theta\right)\)

    \(=3 \cos ^{-1} x \)

    Hence, the correct option is (A).

  • Question 24
    1 / -0

    If \(x=\tan ^{-1}(\frac{1}{5})\) then \(\sin 2 x\) is equal to?

    Solution

    Given,

    \(x=\tan ^{-1}(\frac{1}{5})\)

    \(\tan x=\frac{1}{5}\)

    As we know that, \(\sin 2 \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}\)

    \(\therefore \sin 2 x=\frac{2 \tan x}{1+\tan ^{2} x}\)

    \(=\frac{2 \times \frac{1}{3}}{1+\left(\frac{1}{5}\right)^{2}} \)

    \(=\frac{\left(\frac{2}{3}\right)}{\frac{s+1}{25}} \)

    \(=\frac{2}{5} \times \frac{25}{26}=\frac{10}{26}\)

    \(=\frac{5}{13}\)

    Hence, the correct option is (B).

  • Question 25
    1 / -0

    Find \(\cot ^{-1} \frac{1}{3}-2 \tan ^{-1} \frac{2}{3}\):

    Solution

    Given,

    \(\cot ^{-1} \frac{1}{3}-2 \tan ^{-1} \frac{2}{3}\)

    \(=\left[\frac{\pi}{2}-\tan ^{-1} \frac{1}{3}\right]-\tan ^{-1} \frac{(\frac{2}{3}+\frac{2}{3})}{(1-\frac{2}{3} \times \frac{2}{3})}\)\(\quad\quad(\because \cot ^{-1} x= \frac{\pi}{2}-\tan ^{-1} x, 2\tan ^{-1} x =\tan ^{-1} (\frac{2x}{1 -x^2}))\)

    \(=\frac{\pi}{2}-\left[\tan ^{-1} \frac{12}{5}+\tan ^{-1} \frac{1}{3}\right]\)

    \(=\frac{\pi}{2}-\left[\tan ^{-1} \frac{\frac{12}{3}+\frac{1}{1}}{1-\frac{12}{5} \times \frac{1}{3}}\right]\)\(\quad\quad(\because \tan ^{-1} x+\tan ^{-1} y =\tan ^{-1} \frac{x+y}{1 -xy} )\)

    \(=\frac{\pi}{2}-\left[\tan ^{-1} \frac{41}{3}\right]\)

    \(=\cot ^{-1} \frac{41}{3}\)

    Hence, the correct option is (C).

  • Question 26
    1 / -0

    Find the value of \(x\) for the equation \(2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x) ?\)

    Solution

    Given,

    \(2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)\)

    As we know that, \(2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right),-1 \leq x \leq 1\)

    \(2 \tan ^{-1}(\cos x)=\tan ^{-1}\left(\frac{2 \cos x}{1-\cos ^{2} x}\right)\)

    As we know that, \(\sin ^{2} x+\cos ^{2} x=1\)

    \(\Rightarrow 2 \tan ^{-1}(\cos x)=\tan ^{-1}\left(\frac{2 \cos x}{\sin ^{2} x}\right)\)

    \(\Rightarrow \tan ^{-1}\left(\frac{2 \cos x}{\sin ^{2} x}\right)=\tan ^{-1}(2 \operatorname{cosec} x)=\tan ^{-1}(\frac{2}{\sin x})\)

    \(\Rightarrow \frac{2 \cos x}{\sin ^{2} x}=\frac{2}{\sin x} \)

    \(\Rightarrow \cos x \sin x-\sin ^{2} x=0\)

    \(\Rightarrow \sin x(\cos x-\sin x)=0\)

    \(\Rightarrow \sin x=0 \text { or } \cos x-\sin x=0 \)

    \(\Rightarrow x=0 \text { or } \frac{\pi}{4}\)

    As we can see that for \(x=0\) the given equation does not exist Thus, \(x=\frac{\pi }{4}\) is the only solution for the given equation.

    Hence, the correct option is (A).

  • Question 27
    1 / -0

    Find the value of \(2 \tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{\sqrt{3}}{2}\right)\right]\)

    Solution

    Given,

    \(2 \tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{\sqrt{3}}{2}\right)\right]\)

    \(\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{\sqrt{3}}{2}\right)\right]\) can be rewritten as:

    \(\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{\sqrt{3}}{2}\right)\right]=\tan ^{-1}\left[2 \cos \left(\frac{2 \pi}{3}\right)\right]\)

    \(=\tan ^{-1}\left[2\left(-\frac{1}{2}\right)\right] \)

    \(=\tan ^{-1}(-1) \)

    \(=-\frac{\pi}{4}\)

    \(2 \tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{\sqrt{3}}{2}\right)\right]=-2 \times \frac{\pi}{4}\)

    \(=-\frac{\pi}{2}\)

    Hence, the correct option is (D).

  • Question 28
    1 / -0

    Find the domain of the inverse trigonometric function \(\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)\) is:

    Solution

    Given,

    \(\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)\)

    The domain of inverse sin function , \(\sin x\) is \(\in [-1,1]\) 

    Domain of the function is calculated as follows:

    \(\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)\)

    \(-1 \leq 2 x \sqrt{1-x^{2}} \leq 1\)

    \(-\frac{1}{2} \leq x \sqrt{1-x^{2}} \leq \frac{1}{2}\)

    \(x^{2}\left(1-x^{2}\right) \leq \frac{1}{4}\)

    Let, \(x^{2} =t\)

    \(t\left(1-t\right) \leq \frac{1}{4}\)

    \(t-t^{2}-\frac{1}{4} \leq 0\)

    \(\left(t-\frac{1}{2}\right)^{2} \leq 0\)

    \(t \leq \frac{1}{2}\)

    \(x^{2} \leq \frac{1}{{2}}\)

    \(x\leq \frac{1}{\sqrt{2}}\)

    \(x \in\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]\)

    Hence, the correct option is (C).

  • Question 29
    1 / -0

    What is \(\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\) equal to?

    Solution

    Given,

    \(\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\)

    Put \(x=\tan \theta\)

    We have to find the value of \(\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\)

    Put \(x=\tan \theta\)

    \(\Rightarrow \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right)\)

    \(\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{\sec ^{2} \theta}\right) \)\(\quad\quad(\because1+\tan ^{2}\theta=\sec ^{2} \theta)\)

    \(=\cos ^{-1}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\)

    \(=\cos ^{-1}(\cos 2 \theta) \quad\left(\because \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta\right)\)

    \(=2 \theta \quad\left(\because \cos ^{-1} \cos x=x\right)\)

    \(=2 \tan ^{-1} x \quad(\because x=\tan \theta)\)

    \(\Rightarrow \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right) \)

    \(\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{\sec ^{2} \theta}\right)\)

    \(=\cos ^{-1}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \)

    \(=\cos ^{-1}(\cos 2 \theta) \quad\left(\because \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta\right) \)

    \(=2 \theta \quad\left(\because \cos ^{-1} \cos x=x\right)\)

    \(=2 \tan ^{-1} x \quad(\because x=\tan \theta)\)

    Hence, the correct option is (C).

  • Question 30
    1 / -0

    \(\cos \left(2 \sin ^{-1} \sqrt{\frac{1-x}{2}}\right)\) is equal to:

    Solution

    Given,

    \(\cos \left(2 \sin ^{-1} \sqrt{\frac{1-x}{2}}\right)\)

    Substitute \(x=\cos \theta\)

    \(\cos \left(2 \sin ^{-1} \sqrt{\frac{1-x}{2}}\right) \)

    \(=\cos \left(2 \sin ^{-1} \sqrt{\frac{1-\cos \theta}{2}}\right) \)

    \(=\cos \left(2 \sin ^{-1} \sqrt{\left.\frac{2 \sin ^{2}\left(\frac{\theta}{2}\right)}{2}\right)}\right.\)

    \(=\cos \left(2 \sin ^{-1} \sin \left(\frac{\theta}{2}\right)\right)\)

    \(=\cos \left(2 \times \frac{\theta}{2}\right) \quad\left(\because \sin ^{-1} (\sin x)=x\right)\)

    \(=\cos \theta=x\)

    Hence, the correct option is (C).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now