Self Studies
Selfstudy
Selfstudy

Inverse Trigonometric Functions Test - 19

Result Self Studies

Inverse Trigonometric Functions Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(tan^{-1}\) x + \(tan^{-1}\)y = \(\frac{4\pi}{5}\), then \(cot^{-1} \)x + \(cot^{-1} \)y equals to

    Solution

    We have,

    \(tan^{-1}\) x + \(tan^{-1}\)y = \(\frac{4\pi}{5}\),

    ⇒ \(\frac{\pi}{2}\) - \(cot^{-1} \)x + \(\frac{\pi}{2}\) - \(cot^{-1} \)y = \(\frac{4\pi}{5}\)

    ⇒ -(\(cot^{-1} \)x + \(cot^{-1} \)y) = \(\frac{4\pi}{5}\) - \(\pi\)   [\(\because\) \(tan^{-1}\)x + \(cot^{-1} \)x = \(\frac{\pi}{2}\)]

    ⇒ \(cot^{-1} \)x + \(cot^{-1} \)y = -\((-\frac{\pi}{5})\)

    ⇒ \(cot^{-1} \)x + \(cot^{-1} \)y = \(\frac{\pi}{5}\)

  • Question 2
    1 / -0

    If \(sin^{-1}\)\((\frac{2a}{1+a^2})\) + \(cos^{-1}\)\((\frac{1-a^2}{1+a^2})\) = \(tan^{-1}\)\((\frac{2x}{1-x^2})\), where a, x \(\in\) [0,1) then the value of x is

    Solution

    We have,

    \(sin^{-1}\)\((\frac{2a}{1+a^2})\) + \(cos^{-1}\)\((\frac{1-a^2}{1+a^2})\) = \(tan^{-1}\)\((\frac{2x}{1-x^2})\)

    Let a = tan\(\theta\) ⇒ \(\theta\) = \(tan^{-1}\)a

    \(\therefore\) \(sin^{-1}\)\((\frac{2tan\theta}{1+tan^2\theta})\) + \(cos^{-1}\)\((\frac{1-tan^2\theta}{1+tan^2\theta})\) = \(tan^{-1}\)\((\frac{2x}{1-x^2})\)

    ⇒ \(sin^{-1}\)sin2\(\theta\) + \(cos^{-1}\)cos2\(\theta\) = \(tan^{-1}\)\(\frac{2x}{1-x^2}\)

    ⇒ 2\(\theta\) + 2\(\theta\) = \(tan^{-1}\)\(\frac{2x}{1-x^2}\)

    ⇒ 4\(tan^{-1}\)a = \(tan^{-1}\)\(\frac{2x}{1-x^2}\)

    ⇒ 2.2\(tan^{-1}\)a = \(tan^{-1}\)\(\frac{2x}{1-x^2}\)

    ⇒ 2.\(tan^{-1}\)\(\frac{2a}{1-a^2}\) = \(tan^{-1}\)\(\frac{2x}{1-x^2}\)   [\(\because\) 2\(tan^{-1}\)x = \(tan^{-1}\)\(\frac{2x}{1-x^2}\)]

    ⇒ \(tan^{-1}\)\(\Bigg[\frac{2(\frac{2a}{1-a^2})}{1-(\frac{2a}{1-a^2})^2}\Bigg]\)=\(tan^{-1}\)\(\frac{2x}{1-x^2}\) 

    \(\therefore\) x = \(\frac{2a}{1-a^2}\)

  • Question 3
    1 / -0

    The value of the expression tan(\(\frac{1}{2}\)\(cos^{-1}\)\(\frac{2}{\sqrt5}\)) is

    Solution

    We have,

    tan(\(\frac{1}{2}\)\(cos^{-1}\)\(\frac{2}{\sqrt5}\))

    ⇒ Let \(\frac{1}{2}\)\(cos^{-1}\)\(\frac{2}{\sqrt5}\) = \(\theta\)

    ⇒ \(cos^{-1}\)\(\frac{2}{\sqrt5}\) = 2\(\theta\) ⇒ cos 2\(\theta\) = \(\frac{2}{\sqrt5}\)

    \(\therefore\) (1 - 2\(sin^2\theta\)) = \(\frac{2}{\sqrt5}\)

    ⇒ 2\(sin^2\theta\) = 1 - \(\frac{2}{\sqrt5}\)

    ⇒ \(sin^2\theta\) = \(\frac{1}{2}\) - \(\frac{1}{\sqrt5}\)

    ⇒ sin \(\theta\) = \(\sqrt{\frac{1}{2}-\frac{1}{\sqrt5}}\)

    \(\therefore\) \(cos^2\theta\) = 1 - \(sin^2\theta\)

    = 1 - \(\frac{1}{2}\) + \(\frac{1}{\sqrt5}\) = \(\frac{1}{2}\) + \(\frac{1}{\sqrt5}\)

    ⇒ cos \(\theta\) = \(\sqrt{\frac{1}{2}+\frac{1}{\sqrt5}}\)

    \(\therefore\) tan \(\theta\) = \(\sqrt{\frac{\frac{1}{2}-\frac{1}{\sqrt5}}{\frac{1}{2}+\frac{1}{\sqrt5}}}\) = \(\sqrt{\frac{\sqrt5-2}{\sqrt5+2}}\) 

    \(\therefore\) tan(\(\frac{1}{2}\)\(cos^{-1}\)\(\frac{2}{\sqrt5}\)) = tan\(tan^{-1}\)\(\sqrt{\frac{\sqrt5-2}{\sqrt5+2}}\)

    \(\sqrt{\frac{\sqrt5-2}{\sqrt5+2}.\frac{\sqrt5-2}{\sqrt5-2}}\)

    \(\sqrt{\frac{(\sqrt5-2)^2}{5-4}}\) = \(\sqrt5 -2\)

  • Question 4
    1 / -0

    If | x | \(\leq\) 1, then 2\(tan^{-1}\)x + \(sin^{-1}\)\((\frac{2x}{1+x^2})\) is equal to

    Solution

    We have,

    2\(tan^{-1}\)x + \(sin^{-1}\)\((\frac{2x}{1+x^2})\)

    Let x = tan \(\theta\)

    \(\therefore\) 2\(tan^{-1}\)tan \(\theta\) + \(sin^{-1}\)\(\frac{2tan\theta}{1+tan^2\theta}\)   [\(\because\) \(tan^{-1}\)(tan x) = x]

    = 2\(\theta\) + \(sin^{-1}\)sin2\(\theta\)  [\(\because\) sin2\(\theta\) = \(\frac{2tan\theta}{1+tan^2\theta}\)]

    = 2\(\theta\) + 2\(\theta\)  [\(\because\) \(sin^{-1}\)(sin x) = x]

    = 4\(\theta\)  [\(\because\) \(\theta\) = \(tan^{-1}\)x]

    = 4\(tan^{-1}\)x

  • Question 5
    1 / -0

    If \(cos^{-1 }\)\(\alpha\) + \(cos^{-1 }\)\(\beta\) + \(cos^{-1 }\)\(\gamma\) = 3\(\pi\), then \(\alpha\)(\(\beta\) + \(\gamma\)) + \(\beta\)(\(\gamma\) + \(\alpha\)) + \(\gamma\)(\(\alpha\) + \(\beta\)) equals

    Solution

    We have

    \(cos^{-1 }\)\(\alpha\) + \(cos^{-1 }\)\(\beta\) + \(cos^{-1 }\)\(\gamma\) = 3\(\pi\),

    We know that, 0 \(\leq\) \(cos^{-1 }\)\(\leq\) \(\pi\)

    ⇒ \(cos^{-1 }\)\(\alpha\) + \(cos^{-1 }\)\(\beta\) + \(cos^{-1 }\)\(\gamma\) = 3\(\pi\)

    If and only if, \(cos^{-1 }\)\(\alpha\) = \(cos^{-1 }\)\(\beta\) = \(cos^{-1 }\)\(\gamma\) = \(\pi\)

    ⇒ cos \(\pi\) = \(\alpha\) = \(\beta\) = \(\gamma\)

    ⇒ -1 = \(\alpha\) = \(\beta\) = \(\gamma\)

    ⇒ \(\alpha\) = \(\beta\) = \(\gamma\) = -1

    \(\therefore\) \(\alpha\)(\(\beta\) + \(\gamma\)) + \(\beta\)(\(\gamma\) + \(\alpha\)) + \(\gamma\)(\(\alpha\) + \(\beta\))

    = -1(-1-1) -1(1-1)-1(-1-1)

    = 2 + 2 + 2 = 6

  • Question 6
    1 / -0

    The number of real Solution of the equation \(\sqrt{1+cos2x}\) = \(\sqrt2\)\(cos^{-1}\) (cos x) in \([\frac{\pi}{2},\pi]\) is

    Solution

    We have,

    \(\sqrt{1+cos2x}\) = \(\sqrt2\)\(cos^{-1}\) (cos x) in \([\frac{\pi}{2},\pi]\)

    ⇒ \(\sqrt{1+2cos^2x-1}\) = \(\sqrt2\)\(cos^{-1}\)(cos x)

    ⇒ \(\sqrt2\)cos = \(\sqrt2\)\(cos^{-1}\)(cos x)

    ⇒ cos x = \(cos^{-1}\)(cos x)

    ⇒ cos x = x     [\(\because\)\(cos^{-1}\)(cos x) = x]

    Which is not true for any real value of x.

    Hence, there is no solution possible for the given equation.

  • Question 7
    1 / -0

    The principal value of \(sin^{-1}\)\((-\frac{1}{2})\) is

    Solution

    \(sin^{-1}\)sin(-30°) = \(-\frac{\pi}{6}\)

  • Question 8
    1 / -0

    1 + \(cot^2\)\((sin^{-1}x)\) =

    Solution

    Let \(sin^{-1}\)x = \(\theta\) ⇒ sin\(\theta\) = x Now

    1 + \(cot^2\theta\) = \(cosec^2\theta\) = \(\frac{1}{x^2}\)

    Hence 1 + \(cot^2\)\((sin^{-1}x)\) = \(\frac{1}{x^2}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now